A python library for face detection and features extraction based on mediapipe library

Overview

FaceAnalyzer

A python library for face detection and features extraction based on mediapipe library

Introduction

FaceAnalyzer is a library based on mediapipe library and is provided under MIT Licence. It provides an object oriented tool to play around with faces. It can be used to :

  1. Extract faces from an image
  2. Measure the face position and orientation
  3. Measure eyes openings
  4. Detect blinks
  5. Extract the face from an image (useful for face learning applications)
  6. Compute face triangulation (builds triangular surfaces that can be used to build 3D models of the face)
  7. Copy a face from an image to another.

Requirements

This library requires :

  1. mediapipe (used for facial landmarks extraction)
  2. opencv used for drawing and image morphing
  3. scipy used for efficient delaulay triangulation
  4. numpy, as any thing that uses math

How to install

Just install from pipy.

pip install FaceAnalyzer

Make sure you upgrade the library from time to time as I am adding new features so frequently those days.

pip install FaceAnalyzer --upgrade

How to use

# Import the two main classes FaceAnalyzer and Face 
from FaceAnalyzer import FaceAnalyzer, Face

fa = FaceAnalyzer()
# ... Recover an image in RGB format as numpy array (you can use pillow opencv but if you use opencv make sure you change the color space from BGR to RGB)
# Now process the image
fa.process(image)

# Now you can find faces in fa.faces which is a list of instances of object Face
if fa.nb_faces>0:
    print(f"{fa.nb_faces} Faces found")
    # We can get the landmarks in numpy format NX3 where N is the number of the landmarks and 3 is x,y,z coordinates 
    print(fa.faces[0].npLandmarks)
    # We can draw all landmarks
    # Get head position and orientation compared to the reference pose (here the first frame will define the orientation 0,0,0)
    pos, ori = fa.faces[0].get_head_posture(orientation_style=1)

Make sure you look at the examples folder in the repository for more details.

Structure

The library is structured as follow:

  • Helpers : A module containing Helper functions, namely geometric transformation between rotation formats, or generation of camera matrix etc
  • FaceAnalyzer : A module to process images and extract faces
  • Face : The main module that represents a face. Allows doing multiple operations such as copying the face and put it on another one or estimate eye opening, head position/orientation in space etc.

Examples

face_mesh :

A basic simple example of how to use webcam to get video and process each frame to extract faces and draw face landmarks on the face.

from_image :

A basic simple example of how to extract faces from an image file.

eye_process :

An example of how to extract faces from a video (using webcam) then process eyes and return eyes openings as well as detecting blinks.

face_off :

An example of how to use webcam to switch faces between two persons.

face_mask :

An example of how to use webcam to put a mask on a face.

Owner
Saifeddine ALOUI
Research engeneer PHD in signal processing and robotics Machine learning expert
Saifeddine ALOUI
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Split your patch similarly to `git add -p` but supporting multiple buckets

split-patch.py This is git add -p on steroids for patches. Given a my.patch you can run ./split-patch.py my.patch You can choose in which bucket to p

102 Oct 06, 2022
2021 National Underwater Robotics Vision Optics

2021-National-Underwater-Robotics-Vision-Optics 2021年全国水下机器人算法大赛-光学赛道-B榜精度第18名 (Kilian_Di的团队:A榜[email pro

Di Chang 9 Nov 04, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Improving Transferability of Representations via Augmentation-Aware Self-Supervision Accepted to NeurIPS 2021 TL;DR: Learning augmentation-aware infor

hankook 38 Sep 16, 2022
Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFlow 2

DreamerPro Official implementation of DreamerPro: Reconstruction-Free Model-Based Reinforcement Learning with Prototypical Representations in TensorFl

22 Nov 01, 2022
An open source library for face detection in images. The face detection speed can reach 1000FPS.

libfacedetection This is an open source library for CNN-based face detection in images. The CNN model has been converted to static variables in C sour

Shiqi Yu 11.4k Dec 27, 2022
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos

D²Conv3D: Dynamic Dilated Convolutions for Object Segmentation in Videos This repository contains the implementation for "D²Conv3D: Dynamic Dilated Co

17 Oct 20, 2022
基于pytorch构建cyclegan示例

cyclegan-demo 基于Pytorch构建CycleGAN示例 如何运行 准备数据集 将数据集整理成4个文件,分别命名为 trainA, trainB:训练集,A、B代表两类图片 testA, testB:测试集,A、B代表两类图片 例如 D:\CODE\CYCLEGAN-DEMO\DATA

Koorye 3 Oct 18, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
This is the pytorch re-implementation of the IterNorm

IterNorm-pytorch Pytorch reimplementation of the IterNorm methods, which is described in the following paper: Iterative Normalization: Beyond Standard

Lei Huang 32 Dec 27, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS 2021), and the code to generate simulation results.

Scalable Intervention Target Estimation in Linear Models Implementation of the paper Scalable Intervention Target Estimation in Linear Models (NeurIPS

0 Oct 25, 2021
object recognition with machine learning on Respberry pi

Respberrypi_object-recognition object recognition with machine learning on Respberry pi line.py 建立一支與樹梅派連線的 linebot 使用此 linebot 遠端控制樹梅派拍照 config.ini l

1 Dec 11, 2021
A minimal TPU compatible Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

NeRF Minimal Jax implementation of NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. Result of Tiny-NeRF RGB Depth

Soumik Rakshit 11 Jul 24, 2022