PyTorch implementation of SQN based on CloserLook3D's encoder

Overview

SQN_pytorch

This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, check our SQN_tensorflow repo.

Caution: currently, this repo does not achieve a satisfactory result as the SQN paper reports. For performance details, check performance section.

The repo is still under development, with the aim of reaching the level of performance reported in the SQN paper.(Note: our SQN_tensorflow repo has slightly higher performance than this pytorch repo.)

Please open an issue, if you have any comments and suggestions for improving the model performance.

TODOs

  • implement the training strategy mentioned in the Appendix of the paper.
  • ablation study
  • benchmark weak supervision

Install python packages

The latest codes are tested on two Ubuntu settings:

  • Ubuntu 18.04, Nvidia 1080, CUDA 10.1, PyTorch 1.4 and Python 3.6
  • Ubuntu 18.04, Nvidia 3090, CUDA 11.3, PyTorch 1.4 and Python 3.6

For details setting up the development environment, check CloserLook3D Pytorch version. To facilitate settings, below I also provide my own bash script( install.sh ) to create a conda environment from scratch for this repo. (You may need tailor this script according to your own system)

#!/bin/bash
ENV_NAME='closerlook'
conda create –n $ENV_NAME python=3.6.10 -y
source activate $ENV_NAME
conda install -c anaconda pillow=6.2 -y
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch -y
conda install -c conda-forge opencv -y
pip3 install termcolor tensorboard h5py easydict

Datasets

Take S3DIS as an example.

Scene Segmentation on S3DIS

You can download the S3DIS dataset from here (4.8 GB). You only need to download the file named Stanford3dDataset_v1.2.zip, unzip and move (or link) it to data/S3DIS/Stanford3dDataset_v1.2. (same as the CloserLook3D repo setting.)

The file structure should look like:

<root>
├── cfgs
│   └── s3dis
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           └── Area_6
├── init.sh
├── datasets
├── function
├── models
├── ops
└── utils

run prepare-s3dis-sqn.sh to preprocess the S3DIS dataset. This script will generate a processed folder with the below structure with five types of data, including: raw, sub-sampled point clouds for each area, KDtrees for each sub-sampled area, projection indices for each raw point over the sub-sampled area and weak labels for raw and sub-sampled point clouds (involving different weak proportion of the dataset, e.g., 0.1, 0.01, 0.001, etc.. Details check datasets/S3DIS_sqn.py and my summary notes in this file.

The processed folder is organized as follows:

<root>
├── data
│   └── S3DIS
│       └── Stanford3dDataset_v1.2
│           ├── Area_1
│           ├── Area_2
│           ├── Area_3
│           ├── Area_4
│           ├── Area_5
│           ├── Area_6
│           └── processed
│             ├── weak_label_0.01
│             ├── weak_label_1.0
│             ├── Area_1_0.040_sub.pkl
│             ├── Area_1.pkl
│             ├── ...(many other pkl files)

Compile custom CUDA operators

sh init.sh

Run

use the run-sqn.sh script for training or evaluation.

The core training script is as follows:

python -m torch.distributed.launch \
--master_port 1234567 \
--nproc_per_node ${num_gpu} \
function/train_s3dis_dist_sqn.py \
--dataset_name ${dataset_name} \
--cfg cfgs/${dataset_name}/pospool_xyz_avg_sqn.yaml \
--num_points ${num_points} \
--batch_size ${batch_size} \
--val_freq 20 \
--weak_ratio ${weak_ratio}

The core evaluation script is as follows:

python -m torch.distributed.launch \
--master_port 12346 \
--nproc_per_node 1 \
function/evaluate_s3dis_dist_sqn.py \
--cfg cfgs/s3dis/pospool_xyz_avg_sqn.yaml \
--load_path <checkpoint>
[--log_dir <log directory>]

Performance on S3DIS

The experiments are still in progress due to my slow GPU.

Model Weak ratio Performance (mIoU, %) Description
Official RandLA-Net 100% 63.0 Fully supervised method trained with full labels.
Official SQN 1/1000 61.4 This official SQN uses additional techniques to improve the performance, our replicaed SQN currently does not investigate this yet. Official SQN does not provide results of S3DIS under the weak ratio of 1/10 and 1/100
Our replicated SQN 1/10 51.4 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/100 25.22 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.
Our replicated SQN 1/1000 21.10 Use PosPool (s) as the encoder whose width=36, due to limited GPU usage and active learning is currently not used.

Acknowledgements

Our pytorch codes borrowed a lot from CloserLook3D and the custom trilinear interoplation CUDA ops are modified from erikwijmans's Pointnet2_PyTorch.

Citation

If you find our work useful in your research, please consider citing:

@article{pytorchpointnet++,
    Author = {YIN, Chao},
    Title = {SQN Pytorch implementation based on CloserLook3D's encoder},
    Journal = {https://github.com/PointCloudYC/SQN_pytorch},
    Year = {2021}
   }

@article{hu2021sqn,
    title={SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds with 1000x Fewer Labels},
    author={Hu, Qingyong and Yang, Bo and Fang, Guangchi and Guo, Yulan and Leonardis, Ales and Trigoni, Niki and Markham, Andrew},
    journal={arXiv preprint arXiv:2104.04891},
    year={2021}
  }
Owner
PointCloudYC
Ph.D candidate at HKUST, focus on point cloud processing and deep learning.
PointCloudYC
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
This repository contains the source code of an efficient 1D probabilistic model for music time analysis proposed in ICASSP2022 venue.

Jump Reward Inference for 1D Music Rhythmic State Spaces An implementation of the probablistic jump reward inference model for music rhythmic informat

Mojtaba Heydari 25 Dec 16, 2022
BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong,

Salesforce 125 Dec 31, 2022
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Buffon’s needle: one of the oldest problems in geometric probability

Buffon-s-Needle Buffon’s needle is one of the oldest problems in geometric proba

3 Feb 18, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Pure python implementation reverse-mode automatic differentiation

MiniGrad A minimal implementation of reverse-mode automatic differentiation (a.k.a. autograd / backpropagation) in pure Python. Inspired by Andrej Kar

Kenny Song 76 Sep 12, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 360 Dec 10, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning

The Rich Get Richer: Disparate Impact of Semi-Supervised Learning Preprocess file of the dataset used in implicit sub-populations: (Demographic groups

<a href=[email protected]"> 4 Oct 14, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
4st place solution for the PBVS 2022 Multi-modal Aerial View Object Classification Challenge - Track 1 (SAR) at PBVS2022

A Two-Stage Shake-Shake Network for Long-tailed Recognition of SAR Aerial View Objects 4st place solution for the PBVS 2022 Multi-modal Aerial View Ob

LinpengPan 5 Nov 09, 2022