One Million Scenes for Autonomous Driving

Overview

ONCE Benchmark

This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset.

The code is mainly based on OpenPCDet.

Introduction

We provide the dataset API and some reproduced models on the ONCE dataset.

Installation

The repo is based on OpenPCDet. If you have already installed OpenPCDet (version >= v0.3.0), you can skip this part and use the existing environment, but remember to re-compile CUDA operators by

python setup.py develop
cd pcdet/ops/dcn
python setup.py develop

If you haven't installed OpenPCDet, please refer to INSTALL.md for the installation.

Getting Started

Please refer to GETTING_STARTED.md to learn more usage about this project.

Benchmark

Please refer to this page for detailed benchmark results. We cannot release the training checkpoints, but it's easy to reproduce the results with provided configurations.

Detection Models

We provide 1 fusion-based and 5 point cloud based 3D detectors. The training configurations are at tools/cfgs/once_models/sup_models/*.yaml

For PointPainting, you have to first produce segmentation results yourself. We used HRNet trained on CityScapes to generate segmentation masks.

Reproduced results on the validation split (trained on the training split):

Method Vehicle Pedestrian Cyclist mAP
PointRCNN 52.09 4.28 29.84 28.74
PointPillars 68.57 17.63 46.81 44.34
SECOND 71.19 26.44 58.04 51.89
PV-RCNN 77.77 23.50 59.37 53.55
CenterPoints 66.79 49.90 63.45 60.05
PointPainting 66.17 44.84 62.34 57.78

Semi-supervised Learning

We provide 5 semi-supervised methods based on the SECOND detector. The training configurations are at tools/cfgs/once_models/semi_learning_models/*.yaml

It is worth noting that all the methods are implemented by ourselves, and some are modified to attain better performance. Thus our implementations may be quite different from the original versions.

Reproduced results on the validation split (semi-supervised learning on the 100k raw_small subset):

Method Vehicle Pedestrian Cyclist mAP
baseline (SECOND) 71.19 26.44 58.04 51.89
Pseudo Label 72.80 25.50 55.37 51.22
Noisy Student 73.69 28.81 54.67 52.39
Mean Teacher 74.46 30.54 61.02 55.34
SESS 73.33 27.31 59.52 53.39
3DIoUMatch 73.81 30.86 56.77 53.81

Unsupervised Domain Adaptation

This part of the codes is based on ST3D. Please copy the configurations at tools/cfgs/once_models/uda_models/* and tools/cfgs/dataset_configs/da_once_dataset.yaml, as well as the dataset file pcdet/datasets/once/once_target_dataset.py to the ST3D repo. The results can be easily reproduced following their instructions.

Task Waymo_to_ONCE nuScenes_to_ONCE ONCE_to_KITTI
Method AP_BEV/AP_3D AP_BEV/AP_3D AP_BEV/AP_3D
Source Only 65.55/32.88 46.85/23.74 42.01/12.11
SN 67.97/38.25 62.47/29.53 48.12/21.12
ST3D 68.05/48.34 42.53/17.52 86.89/41.42
Oracle 89.00/77.50 89.00/77.50 83.29/73.45

Citation

If you find this project useful in your research, please consider cite:

@article{mao2021one,
  title={One Million Scenes for Autonomous Driving: ONCE Dataset},
  author={Mao, Jiageng and Niu, Minzhe and Jiang, Chenhan and Liang, Hanxue and Liang, Xiaodan and Li, Yamin and Ye, Chaoqiang and Zhang, Wei and Li, Zhenguo and Yu, Jie and others},
  journal={arXiv preprint arXiv:2106.11037},
  year={2021}
}
Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations

NANSY: Unofficial Pytorch Implementation of Neural Analysis and Synthesis: Reconstructing Speech from Self-Supervised Representations Notice Papers' D

Dongho Choi 최동호 104 Dec 23, 2022
Official Implementation for Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation

Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation We present a generic image-to-image translation framework, pixel2style2pixel (pSp

2.8k Dec 30, 2022
Official repo for SemanticGAN https://nv-tlabs.github.io/semanticGAN/

SemanticGAN This is the official code for: Semantic Segmentation with Generative Models: Semi-Supervised Learning and Strong Out-of-Domain Generalizat

151 Dec 28, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
[AAAI2022] Source code for our paper《Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning》

SSVC The source code for paper [Suppressing Static Visual Cues via Normalizing Flows for Self-Supervised Video Representation Learning] samples of the

7 Oct 26, 2022
pytorch implementation of dftd2 & dftd3

torch-dftd pytorch implementation of dftd2 [1] & dftd3 [2, 3] Install # Install from pypi pip install torch-dftd # Install from source (for developer

33 Nov 28, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Unofficial PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution

PyTorch reimplementation of the paper Swin Transformer V2: Scaling Up Capacity and Resolution [arXiv 2021].

Christoph Reich 122 Dec 12, 2022
Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation

Flexible-CLmser: Regularized Feedback Connections for Biomedical Image Segmentation The skip connections in U-Net pass features from the levels of enc

Boheng Cao 1 Dec 29, 2021
This is the code of paper ``Contrastive Coding for Active Learning under Class Distribution Mismatch'' with python.

Contrastive Coding for Active Learning under Class Distribution Mismatch Official PyTorch implementation of ["Contrastive Coding for Active Learning u

21 Dec 22, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

A Simple Framwork for CV Pre-training Model (SOCO, VirTex, BEiT)

Sense-GVT 14 Jul 07, 2022
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
2021 credit card consuming recommendation

2021 credit card consuming recommendation

Wang, Chung-Che 7 Mar 08, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Pytorch implementation of "Training a 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet"

Token Labeling: Training an 85.4% Top-1 Accuracy Vision Transformer with 56M Parameters on ImageNet (arxiv) This is a Pytorch implementation of our te

蒋子航 383 Dec 27, 2022