Gauge equivariant mesh cnn

Overview

Geometric Mesh CNN

The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphsDownload PDF by Pim de Haan, Maurice Weiler, Taco Cohen and Max Welling, presented at ICLR 2021.

We would like to thank Ruben Wiersma as his implementation of Harmonic Surface Networks served as an inspiration for some parts of the code. Furthermore, we would like to thank Julian Suk for beta-testing the code.

Installation & dependencies

Make sure the following dependencies are installed:

  • Python (tested on 3.8)
  • Pytorch (tested on 1.8)
  • Pytorch Geometric (tested on 1.6.3)
  • Conda

Then to install, clone this repository and install the gem_cnn package by executing in this directory:

pip install .

Docker

Alternatively, if you have a GPU with CUDA 11.1 and have set up docker, then you can easily run the experiment at experiments/shapes.py in the following way:.

To build the image run in this directory:

docker build . -t gem_cnn_demo

Then to run:

docker run -it --rm --runtime=nvidia gem_cnn_demo python experiments/shapes.py

In order to run the FAUST experiments via Docker, we recommend mounting the local data folder inside the docker container by running:

docker run -it --rm --runtime=nvidia -v $(pwd)/data:/workspace/data gem_cnn_demo python experiments/faust_direct.py

Then run once, and follow instructions on how to download the dataset. Then run again to train the FAUST model.

Usage

The code implements a graph convolution with Pytorch Geometric.

Example experiments

In the folder experiments, the following examples are given:

  • experiments/shapes.py a simple toy experiment to classify geometric shapes.
  • experiments/faust_direct.py an implementation of a network similar the network used in our paper on the FAUST dataset. It does message passing directly over the edges of the mesh and does not use pooling. The used input features are the non-equivariant XYZ coordinates.
  • experiments/faust_pool.py is an alternative implementation for FAUST. It uses convolution over larger distances than direct neighbours, pooling and the equivariant matrix features.

All example experiments use Pytorch-Ignite, but the GEM-CNN code does not depend on this.

Reference

If you find our work useful, please cite

@inproceedings{dehaan2021,  
  title={Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs},  
  author={Pim de Haan and Maurice Weiler and Taco Cohen and Max Welling}
  booktitle={International Conference on Learning Representations},  
  year={2021},  
  url={https://openreview.net/forum?id=Jnspzp-oIZE}  
}

Export

This software may be subject to U.S. and international export, re-export, or transfer (β€œexport”) laws. Diversion contrary to U.S. and international law is strictly prohibited.

Owner
An initiative of Qualcomm Technologies, Inc.
MlTr: Multi-label Classification with Transformer

MlTr: Multi-label Classification with Transformer This is official implement of "MlTr: Multi-label Classification with Transformer". Abstract The task

η¨‹ζ˜Ÿ 38 Nov 08, 2022
Neural Architecture Search Powered by Swarm Intelligence 🐜

Neural Architecture Search Powered by Swarm Intelligence 🐜 DeepSwarm DeepSwarm is an open-source library which uses Ant Colony Optimization to tackle

288 Oct 28, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Keras like implementation of Deep Learning architectures from scratch using numpy.

Mini-Keras Keras like implementation of Deep Learning architectures from scratch using numpy. How to contribute? The project contains implementations

MANU S PILLAI 5 Oct 10, 2021
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
End-To-End Memory Network using Tensorflow

MemN2N Implementation of End-To-End Memory Networks with sklearn-like interface using Tensorflow. Tasks are from the bAbl dataset. Get Started git clo

Dominique Luna 339 Oct 27, 2022
PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML)

pytorch-maml This is a PyTorch implementation of the supervised learning experiments from the paper Model-Agnostic Meta-Learning (MAML): https://arxiv

Kate Rakelly 516 Jan 05, 2023
WiFi-based Multi-task Sensing

WiFi-based Multi-task Sensing Introduction WiFi-based sensing has aroused immense attention as numerous studies have made significant advances over re

zhangx289 6 Nov 24, 2022
Automatic labeling, conversion of different data set formats, sample size statistics, model cascade

Simple Gadget Collection for Object Detection Tasks Automatic image annotation Conversion between different annotation formats Obtain statistical info

llt 4 Aug 24, 2022
Text Summarization - WCN β€” Weighted Contextual N-gram method for evaluation of Text Summarization

Text Summarization WCN β€” Weighted Contextual N-gram method for evaluation of Text Summarization In this project, I fine tune T5 model on Extreme Summa

Aditya Shah 1 Jan 03, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
A set of examples around hub for creating and processing datasets

Examples for Hub - Dataset Format for AI A repository showcasing examples of using Hub Uploading Dataset Places365 Colab Tutorials Notebook Link Getti

Activeloop 11 Dec 14, 2022
Code for CVPR2021 paper "Learning Salient Boundary Feature for Anchor-free Temporal Action Localization"

AFSD: Learning Salient Boundary Feature for Anchor-free Temporal Action Localization This is an official implementation in PyTorch of AFSD. Our paper

Tencent YouTu Research 146 Dec 24, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
Hands-On Machine Learning for Algorithmic Trading, published by Packt

Hands-On Machine Learning for Algorithmic Trading Hands-On Machine Learning for Algorithmic Trading, published by Packt This is the code repository fo

Packt 981 Dec 29, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022