QED-C: The Quantum Economic Development Consortium provides these computer programs and software for use in the fields of quantum science and engineering.

Overview

Application-Oriented Performance Benchmarks for Quantum Computing

This repository contains a collection of prototypical application- or algorithm-centric benchmark programs designed for the purpose of characterizing the end-user perception of the performance of current-generation Quantum Computers.

The repository is maintained by members of the Quantum Economic Development Consortium (QED-C) Technical Advisory Committee on Standards and Performance Metrics (Standards TAC).

Important Note -- The examples maintained in this repository are not intended to be viewed as "performance standards". Rather, they are offered as simple "prototypes", designed to make it as easy as possible for users to execute simple "reference applications" across multiple quantum computing APIs and platforms. The application / algorithmic examples are structured using a uniform pattern for defining circuits, executing across different platforms, collecting results, and measuring the performance and fidelity in useful ways.

A wide variety of "reference applications" are provided. At the current stage in the evolution of quantum computing hardware, some applications will perform better on one hardware target, while a completely different set may execute better on another target. They are designed to provide for users a quantum "jump start", so to speak, eliminating the need to develop for themselves uniform code patterns that facilitate quick development, deployment and experimentation.

See the Implementation Status section below for the latest report on benchmarks implemented to date.

Notes on Repository Organization

The repository is organized at the highest level by specific reference application names. There is a directory for each application or algorithmic example, e.g. quantum-fourier-transform, which contains the the bulk of code for that application.

Within each application directory, there is a second level directory, one for each of the target programming environments that are supported. The repository is organized in this way to emphasize the application first and the target environment second, to encourage full support across platforms.

The directory names and the currently supported environments are:

    qiskit      -- IBM Qiskit
    cirq        -- Google Cirq
    braket      -- Amazon Braket

The goal has been to make the implementation of each algorithm identical across the different target environments, with processing and reporting of results as similar as possible. Each application directory includes a README file with information specific to that application or algorithm. Below we list the benchmarks we have implemented with a suggested order of approach; the benchmarks in levels 1 and 2 are more simple and a good place to start for beginners, while levels 3 and 4 are more complicated and might build off of intuition and reasoning developed in earlier algorithms.

Complexity of Benchmark Algorithms (Increasing Difficulty)

    1: Deutsch-Jozsa, Bernstein-Vazirani, Hidden Shift
    2: Quantum Fourier Transform, Grover's Search
    3: Phase Estimation, Amplitude Estimation
    4: Monte Carlo, Hamiltonian Simulation, Variational Quantum Eigensolver, Shor's Order Finding

In addition to the application directories at the highest level, there several other directories or files with specific purpose:

    _common                      -- collection of shared routines, used by all the application examples
    _doc                         -- detailed DESIGN_NOTES, and other reference materials
    _containerbuildfiles         -- build files and instructions for creating Docker images (optional)
    _setup                       -- information on setting up all environments
    
    benchmarks-*.ipynb.template  -- Jupyter Notebook templates

Setup and Configuration

The prototype benchmark applications are easy to run and contain few dependencies. The primary dependency is on the Python packages needed for the target environment in which you would like to execute the examples.

In the _setup folder you will find a subdirectory for each of the target environments that contains a README with everything you need to know to install and configure the specific environment in which you would like to run.

Important Note:

The suite of application benchmarks is configured by default to run on the simulators
that are typically included with the quantum programming environments.
Certain program parameters, such as maximum numbers of qubits, number of circuits
to execute for each qubit width and the number of shots, are defaulted to values that 
can run on the simulators easily.

However, when running on hardware, it is important to reduce these values to account 
for the capabilities of the machine on which you are executing. This is especially 
important for systems on which one could incur high billing costs if running large circuits.
See the above link to the _setup folder for more information about each programming environment.

Executing the Application Benchmark Programs from a Shell Window

The benchmark programs may be run manually in a command shell. In a command window or shell, change directory to the application you would like to execute. Then, simply execute a line similar to the following, to begin execution of the main program for the application:

    cd bernstein-vazirani/qiskit
    python bv_benchmark.py

This will run the program, construct and execute multiple circuits, analyze results and produce a set of bar charts to report on the results. The program executes random circuits constructed for a specific number of qubits, in a loop that ranges from min_qubits to max_qubits (with default values that can be passed as parameters). The number of random circuits generated for each qubit size can be controlled by the max_circuits parameter.

As each benchmark program is executed, you should see output that looks like the following, showing the average circuit creation and execution time along with a measure of the quality of the result, for each circuit width executed by the benchmark program:

Sample Output

Executing the Application Benchmark Programs in a Jupyter Notebook

Alternatively you may use the Jupyter Notebook templates that are provided in this repository. Simply copy and remove the .template extension from the copied ipynb template file. There is one template file provided for each of the API environments supported.

In the top level of this repo, start your jupyter-notebook process. When the browser listing appears, select the desired notebook .ipynb file to launch the notebook. There you will have access to a cell for each of the benchmarks in the repository, and may "Run" any one of them independently and see the results presented there.

Container Deployment of the Application Benchmark Programs

Applications are often deployed into Container Management Frameworks such as Docker, Kubernetes, and the like.

The Prototype Benchmarks repository includes support for the creation of a unique 'container image' for each of the supported API environments. You can find the instructions and all the necessary build files in a folder at the top level named _containerbuildfiles. The benchmark program image can be deployed into a container management framework and executed as any other application in that framework.

Once built, deployed and launched, the container process invokes a Jupyter Notebook from which you can run all the available benchmarks.

Interpreting Metrics

  • Creation Time: time spent on classical machine creating the circuit and transpiling.
  • Execution Time: time spent on quantum simulator or hardware backend running the circuit. This only includes the time when the algorirhm is being run and does not inlcude any of the time waiting in a queue on qiskit and cirq. Braket does not currently repor execution time, and therefore does include the queue time as well.
  • Fidelity: a measure of how well the simulator or hardware runs a particular benchmark, on a scale from 0 to 1, with 0 being a completely useless result and 1 being perfect execution of the algorithm. The math of how we calculate the fidelity is outlined in the file _doc/POLARIZATION_FIDELITY.md.
  • Circuit/Transpiled Depth: number of layers of gates to apply a particular algorithm. The Circuit depth is the depth if all of the gates used for the algorithm were native, while the transpile depth is the amount of gates if only certain gates are allowed. We default to ['rx', 'ry', 'rz', 'cx']. Note: this set of gates is just used to provide a normalized transpiled depth across all hardware and simulator platforms, and we seperately transpile to the native gate set of the hardware. The depth can be used to help provide reasoning for why one algorithm is harder to run than another for the same circuit width. This metric is currently only available on the Qiskit implementation of the algorithms.

Implementation Status

Below is a table showing the degree to which the benchmarks have been implemented in each of the target platforms (as of the last update to this branch):

Prototype Benchmarks - Implementation Status

Owner
SRI International
SRI International
M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラム

M-LSD-warpPerspective-Example M-LSDを用いて四角形を検出し、射影変換を行うサンプルプログラムです。 Requirements OpenCV 3.4.2 or Later tensorflow 2.4.1 or Later Usage 実行方法は以下です。 pytho

KazuhitoTakahashi 9 Oct 14, 2022
Official implementation of "An Image is Worth 16x16 Words, What is a Video Worth?" (2021 paper)

An Image is Worth 16x16 Words, What is a Video Worth? paper Official PyTorch Implementation Gilad Sharir, Asaf Noy, Lihi Zelnik-Manor DAMO Academy, Al

213 Nov 12, 2022
This tool will help you convert your text to handwriting xD

So your teacher asked you to upload written assignments? Hate writing assigments? This tool will help you convert your text to handwriting xD

Saurabh Daware 4.2k Jan 07, 2023
Let's explore how we can extract text from forms

Form Segmentation Let's explore how we can extract text from any forms / scanned pages. Objectives The goal is to find an algorithm that can extract t

Philip Doxakis 42 Jun 05, 2022
Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Repository of conference publications and source code for first-/ second-authored papers published at NeurIPS, ICML, and ICLR.

Daniel Jarrett 26 Jun 17, 2021
Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

wang zhang 1 Jun 28, 2022
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
A facial recognition program that plays a alarm (mp3 file) when a person i seen in the room. A basic theif using Python and OpenCV

Home-Security-Demo A facial recognition program that plays a alarm (mp3 file) when a person is seen in the room. A basic theif using Python and OpenCV

SysKey 4 Nov 02, 2021
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
A novel region proposal network for more general object detection ( including scene text detection ).

DeRPN: Taking a further step toward more general object detection DeRPN is a novel region proposal network which concentrates on improving the adaptiv

Deep Learning and Vision Computing Lab, SCUT 151 Dec 12, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
Automatically download multiple papers by keywords in CVPR

CVFPaperHelper Automatically download multiple papers by keywords in CVPR Install mkdir PapersToRead cd PaperToRead pip install requests tqdm git clon

46 Jun 08, 2022
Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform sign language recognition.

Sign Language Recognition Service This is a Sign Language Recognition service utilizing a deep learning model with Long Short-Term Memory to perform s

Martin Lønne 1 Jan 08, 2022
Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd.

Head Detector Code for the head detector (HeadHunter) proposed in our CVPR 2021 paper Tracking Pedestrian Heads in Dense Crowd. The head_detection mod

Ramana Subramanyam 76 Dec 06, 2022
Document Layout Analysis

Eynollah Document Layout Analysis Introduction This tool performs document layout analysis (segmentation) from image data and returns the results as P

QURATOR-SPK 198 Dec 29, 2022
[ICCV, 2021] Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks

Cloud Transformers: A Universal Approach To Point Cloud Processing Tasks This is an official PyTorch code repository of the paper "Cloud Transformers:

Visual Understanding Lab @ Samsung AI Center Moscow 27 Dec 15, 2022
OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched

OCRmyPDF adds an OCR text layer to scanned PDF files, allowing them to be searched or copy-pasted. ocrmypdf # it's a scriptable c

jbarlow83 7.9k Jan 03, 2023
Lightning Fast Language Prediction 🚀

whatthelang Lightning Fast Language Prediction 🚀 Dependencies The dependencies can be installed using the requirements.txt file: $ pip install -r req

Indix 152 Oct 16, 2022
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022