sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Overview

Introduction

sssegmentation is a general framework for our research on strongly supervised semantic segmentation.

Documents

In English

https://sssegmentation.readthedocs.io/en/latest/

Supported

Supported Backbones

Supported Models

Supported Datasets

Citation

If you use this framework in your research, please cite this project.

@misc{ssseg2020,
    author = {Zhenchao Jin},
    title = {SSSegmentation: A general framework for strongly supervised semantic segmentation},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/SegmentationBLWX/sssegmentation}},
}

References

[1]. https://github.com/open-mmlab/mmcv
[2]. https://github.com/open-mmlab/mmsegmentation
Comments
  • Training on custom dataset with 4 channels

    Training on custom dataset with 4 channels

    Hi, I want to train my own dataset which has images in 4 channels - RGB images and IR(infrared) images. Could you help me out with that? How can i modify the codes of this repo to accommodate that extra channel?

    opened by cspearl 4
  • how to train with multi-gpu in one machine

    how to train with multi-gpu in one machine

    hi,i wanna train the model with 4 gpus in one machine however, your code 'distrain.sh' and 'train.py' can only train with distributed mode in multi-machine how can i modify the code ?

    opened by Kenneth-X 3
  • isnet:imagelevel.py

    isnet:imagelevel.py

    imagelevel.py : 47: feats_il = self.correlate_net(x, torch.cat([x_global, x], dim=1))

    isanet.py: 47:context = super(SelfAttentionBlock, self).forward(x, x)

    is there any problem? bug?

    opened by shujunyy123 3
  • How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    How to modify parameters to use single card training?

    In addition to modifying the following in config:

    SEGMENTOR_CFG.update(distributed{'is_on':False})

    opened by kakamie 1
  • SWIN-B with DeepLabv3+ training on custom dataset

    SWIN-B with DeepLabv3+ training on custom dataset

    Hi, I am learning about Segmentation and want to try out the segmentation my custom data set. Could you please provide steps on how to use supported backbones with some particular architectures?

    If I want to use SWIN-B as my backbone on DeepLabV3+ using a custom dataset, what should be the commands and all. I could not find anything on the docs and on the github page. Could you please help.

    opened by deshwalmahesh 1
  • Is there should be 'continue'?

    Is there should be 'continue'?

    https://github.com/SegmentationBLWX/sssegmentation/blob/7a405b1a4949606deae067223ebd68cceec6b225/ssseg/modules/models/memorynet/memory.py#L176

    If there are more than one 'num_feats_per_cls' in the furture, 'break' will make this for loop only update the first memory_feature?

    opened by EricKani 1
  • 医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    医学图像分割也很有意义,我想给你一些公开的医学图像数据集。哈哈哈哈

    Hi @CharlesPikachu !UNet 也是大名鼎鼎的分割模型啊,它在医学图像分割领域是 SOTA,个人认为 Supported Models 列表里应该有名字,而且应该在 FCN 之后。哈哈哈 🥇

    虽然 PyTorch Hub 已经有预训练的 UNet 了,但我想要皮卡丘也有! 🛩️

    这里提供一些医学数据集给你参考:

    opened by S-HuaBomb 1
Releases(v1.0.0)
Source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals.

PatchGraph This repository contains the source code of the paper PatchGraph: In-hand tactile tracking with learned surface normals. Installation Creat

Paloma Sodhi 11 Dec 15, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Object recognition using Azure Custom Vision AI and Azure Functions

Step by Step on how to create an object recognition model using Custom Vision, export the model and run the model in an Azure Function

El Bruno 11 Jul 08, 2022
A PoC Corporation Relationship Knowledge Graph System on top of Nebula Graph.

Corp-Rel is a PoC of Corpartion Relationship Knowledge Graph System. It's built on top of the Open Source Graph Database: Nebula Graph with a dataset

Wey Gu 20 Dec 11, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
Based on Stockfish neural network(similar to LcZero)

MarcoEngine Marco Engine - interesnaya neyronnaya shakhmatnaya set', kotoraya ispol'zuyet metod samoobucheniya(dostizheniye khoroshoy igy putem proboy

Marcus Kemaul 4 Mar 12, 2022
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
This repository is for the preprint "A generative nonparametric Bayesian model for whole genomes"

BEAR Overview This repository contains code associated with the preprint A generative nonparametric Bayesian model for whole genomes (2021), which pro

Debora Marks Lab 10 Sep 18, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022