Fuse radar and camera for detection

Related tags

Deep LearningSAF-FCOS
Overview

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor

This project hosts the code for implementing the SAF-FCOS algorithm for object detection, as presented in our paper:

SAF-FCOS: Spatial Attention Fusion for Obstacle Detection using MmWave Radar and Vision Sensor;
Shuo Chang, YiFan Zhang, Fan Zhang, Xiaotong Zhao, Sai Huang, ZhiYong Feng and Zhiqing Wei;
In: Sensors, 2019.

And the whole project is built upon FCOS, Below is FCOS license.

FCOS for non-commercial purposes

Copyright (c) 2019 the authors
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
  list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
  this list of conditions and the following disclaimer in the documentation
  and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The full paper is available at: https://www.mdpi.com/1424-8220/20/4/956.

You should known

Please read the FCOS project first FCOS-README.md

Installation

Please check INSTALL.md for installation instructions.

Generate Data

  1. Please download Full dataset (v1.0) of nuScenes dataset from the link. download

  2. Then, upload all download tar files to an ubuntu server, and uncompress all *.tar files in a specific folder:

mkdir ~/Data/nuScenes
mv AllDownloadTarFiles ~/Data/nuScenes
cd ~/Data/nuScenes
for f in *.tar; do tar -xvf "$f"; done
  1. Convert the radar pcd file as image:
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-mini
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-trainval
python tools/nuscenes/convert_radar_point_to_image.py --dataroot ~/Data/nuScenes --version v1.0-test
  1. Calculate the norm info of radar images:
python tools/nuscenes/extract_pc_image_norm_info_from_image.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval
  1. Generate 2D detections results for nuScenes CAM_FRONT images by 'FCOS_imprv_dcnv2_X_101_64x4d_FPN_2x.pth',
    some of detection results should be refined by labelers to get tighter bboxes,
    and save the detection results as txt file in the folder ~/Data/nuScenes/fcos/CAM_FRONT:
    detection1 detection2 The detection results are saved as '0, 1479.519, 611.043, 1598.754, 849.447'. The first column is category, and the last stands for position.
    For convenience, we supply our generated 2D txt files in cloud drive and in folder data/fcos.zip.
    For users not in China, please download from google drive.
    For users in China, please download from baidu drive.

    链接:https://pan.baidu.com/s/11NNYpmBbs5sSqSsFxl-z7Q 
    提取码:6f1x 

    If you use our generated txt files, please:

mv fcos.zip ~/Data/nuScenes
unzip fcos.zip
  1. Generate 2D annotations in coco style for model training and test:
python tools/nuscenes/generate_2d_annotations_by_fcos.py --datadir ~/Data/nuScenes --outdir ~/Data/nuScenes/v1.0-trainval

Prepare training

The following command line will train fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs with Synchronous Stochastic Gradient Descent (SGD):

python -m torch.distributed.launch \
       --nproc_per_node=8 \
       --master_port=$((RANDOM + 10000)) \
       tools/train_net.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       DATALOADER.NUM_WORKERS 2 \
       OUTPUT_DIR tmp/fcos_imprv_R_50_FPN_1x

Prepare Test

The following command line will test fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml on 8 GPUs:

python -m torch.distributed.launch \
       --nproc_per_node=8  
       --master_port=$((RANDOM + 10000)) \
       tools/test_epoch.py \
       --config-file configs/fcos_nuscenes/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07.yaml \
       --checkpoint-file tmp/fcos_imprv_R_50_FPN_1x_ATTMIX_135_Circle_07/model_0010000.pth \ 
       OUTPUT_DIR tmp/fcos_imprv_R_101_FPN_1x_ATTMIX_135_Circle_07

Citations

Please consider citing our paper and FOCS in your publications if the project helps your research. BibTeX reference is as follows.

@article{chang2020spatial,
  title={Spatial Attention fusion for obstacle detection using mmwave radar and vision sensor},
  author={Chang, Shuo and Zhang, Yifan and Zhang, Fan and Zhao, Xiaotong and Huang, Sai and Feng, Zhiyong and Wei, Zhiqing},
  journal={Sensors},
  volume={20},
  number={4},
  pages={956},
  year={2020},
  publisher={Multidisciplinary Digital Publishing Institute}
}
@inproceedings{tian2019fcos,
  title   =  {{FCOS}: Fully Convolutional One-Stage Object Detection},
  author  =  {Tian, Zhi and Shen, Chunhua and Chen, Hao and He, Tong},
  booktitle =  {Proc. Int. Conf. Computer Vision (ICCV)},
  year    =  {2019}
}
Owner
ChangShuo
Machine learning. Visual Object Tracking. Signal Processing. Multi-Sensor Fusion
ChangShuo
rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle.

rastrainer rastrainer is a QGIS plugin to training remote sensing semantic segmentation model based on PaddlePaddle. UI TODO Init UI. Add Block. Add l

deepbands 5 Mar 04, 2022
:boar: :bear: Deep Learning based Python Library for Stock Market Prediction and Modelling

bulbea "Deep Learning based Python Library for Stock Market Prediction and Modelling." Table of Contents Installation Usage Documentation Dependencies

Achilles Rasquinha 1.8k Jan 05, 2023
Practical Single-Image Super-Resolution Using Look-Up Table

Practical Single-Image Super-Resolution Using Look-Up Table [Paper] Dependency Python 3.6 PyTorch glob numpy pillow tqdm tensorboardx 1. Training deep

Younghyun Jo 116 Dec 23, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Image-to-Image Translation in PyTorch

CycleGAN and pix2pix in PyTorch New: Please check out contrastive-unpaired-translation (CUT), our new unpaired image-to-image translation model that e

Jun-Yan Zhu 19k Jan 07, 2023
PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

PyTorch/TorchScript compiler for NVIDIA GPUs using TensorRT

NVIDIA Corporation 1.8k Dec 30, 2022
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

北海若 48 Nov 14, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Examples of using f2py to get high-speed Fortran integrated with Python easily

f2py Examples Simple examples of using f2py to get high-speed Fortran integrated with Python easily. These examples are also useful to troubleshoot pr

Michael 35 Aug 21, 2022
The repository offers the official implementation of our BMVC 2021 paper in PyTorch.

CrossMLP Cascaded Cross MLP-Mixer GANs for Cross-View Image Translation Bin Ren1, Hao Tang2, Nicu Sebe1. 1University of Trento, Italy, 2ETH, Switzerla

Bingoren 16 Jul 27, 2022
A curated list of awesome open source libraries to deploy, monitor, version and scale your machine learning

Awesome production machine learning This repository contains a curated list of awesome open source libraries that will help you deploy, monitor, versi

The Institute for Ethical Machine Learning 12.9k Jan 04, 2023
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2

Graph Transformer - Pytorch Implementation of Graph Transformer in Pytorch, for potential use in replicating Alphafold2. This was recently used by bot

Phil Wang 97 Dec 28, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
Pseudo lidar - (CVPR 2019) Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving

Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving This paper has been accpeted by Conference o

Yan Wang 881 Dec 27, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022