FewBit — a library for memory efficient training of large neural networks

Overview

FewBit

FewBit — a library for memory efficient training of large neural networks. Its efficiency originates from storage optimizations applied to backward pass and memory footprint reduction for saved tensors between forward and backward passes. Namely, the library provides its own implementation of common activation functions and linear layer since they contribute the most to memory usage in training time. Optimized linear layer saves up to 15-20% memory and optimized activation functions save up to 15-30% of memory usage with negligible loss in performance (see [1][2] for details).

In the table below, one can see comparison of different optimizations applied to RoBERTa model. Compression rate of randomized linear layer is 20% (it uses only 20% of input) and GELU approximation uses only 3 bits.

Task Batch Size GELU Linear Layer Peak Memory, GiB Saving, %
1 MRPC 128 Vanilla Vanilla 11.30 0.0
2 MRPC 128 3-bit Vanilla 9.75 13.8
3 MRPC 128 Vanilla Randomized 9.20 18.6
4 MRPC 128 3-bit Randomized 7.60 32.7

Usage

The library fewbit implements basic activation functions with backward pass optimizations for reducing memory footprint during model training. All activation functions exported by the library can be used as a drop-in replacement for most of standard activation functions implemented in PyTorch. The common pattern is to replace torch.nn with fewbit package qualifier.

import fewbit
import torch as T

model = T.nn.Sequential(
    ...,
    fewbit.GELU(bits=3),  # Use 3-bits GELU approximation.
    ...,
)

In the case of pre-trained models, one can rebuild model with map_module routine which walks through model tree recursively and allows to replace some modules or activation functions. So, user should only use suitable constructor for a new module. As an example the code below replaces all default linear layers with randomized ones.

from fewbit import RandomizedLinear
from fewbit.util import convert_linear, map_module

converter = lambda x: convert_linear(x, RandomizedLinear, proj_dim_ratio=0.1)
new_model = map_module(old_model, converter)  # In-place model construction.

Quantized Gradients of Activation Functions

Installation

The simplest and preferred installation way is installation from PyPI.

pip install -U fewbit

FewBit is written in Python, but it implements some opertions in C++/CUDA to archive better performance. So, building from source requires CUDA Toolkit and CMake as a build system. The latest release can be installed with the following command.

pip install -U https://github.com/SkoltechAI/fewbit.git

List of Activation Functions

The library supports the following activation functions.

Piece-wise Activation Functions

In this section, all activation functions has 1-bit derivative. The only difference is band. The band requires two comparison to determine gradient domain. The complete list of activation functions is leaky_relu, relu, threshold, hardsigmoid, hardtanh, relu6, hardshrink, and softshrink.

Continous Activation Functions

All continous activation function could be divided into three classes according to its parity property: odd, even, and neither even nor odd. The parity property allows to use a small optimization to increase precision of approximation. The complete list of reimplemented activation functions in this category is celu, elu, hardswish, logsigmoid, mish, selu, sigmoid, silu, softplus, softsign, tanh, and tanhshrink.

List of Modules

Module RandomizedLinear is a replacement for default Linear module. It is used power of approximate matrix multiplication for memory saving.

Assembly

Preliminary step depends on one's PyTorch distribution and availiable tooling. Building of native components requires CMake and a build system like Make or Ninja. Next, if PyTorch is installed system-wide the the following step is not neccessary. Otherwise, one likely should add search path for CMake modules to environment variables as follows.

export CMAKE_PREFIX_PATH="$(python -c 'import torch.utils; print(torch.utils.cmake_prefix_path)')"

The next step is useful in development environment. It just builds PyTorch operator library in source tree (option --inplace) with forced CUDA support (option --cuda). By default no CUDA support are forced.

python setup.py build_ext --inplace --cuda

With options similar to the previous step, one can build wheel binary distribution of the package.

python setup.py bdist_wheel --inplace --cuda

Development Environment with Docker

In order to develop on different platforms we uses custom docker image for non-priviledge user based on Nvidia CUDA image. Image contains pre-built native extention and it is parametrized by user name and user ID in a host system. The latter is crucial thing in binding host volumes.

docker build -t fewbit --build-arg UID=$(id -u) .
docker run --rm -ti -e TERM=$TERM fewbit

Citation

Please cite the following papers if the library is used in an academic paper (export BibTeX).

@misc{bershatsky2022memoryefficient,
    title={{M}emory-{E}fficient {B}ackpropagation through {L}arge {L}inear {L}ayers},
    author={Daniel Bershatsky and Aleksandr Mikhalev and Alexandr Katrutsa and Julia Gusak and Daniil Merkulov and Ivan Oseledets},
    year={2022},
    eprint={2201.13195},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

@misc{novikov2022fewbit,
    title={{F}ew-{B}it {B}ackward: {Q}uantized {G}radients of {A}ctivation {F}unctions for {M}emory {F}ootprint {R}eduction},
    author={Georgii Novikov and Daniel Bershatsky and Julia Gusak and Alex Shonenkov and Denis Dimitrov and Ivan Oseledets},
    year={2022},
    eprint={2202.00441},
    archivePrefix={arXiv},
    primaryClass={cs.LG},
}

License

© The FewBit authors, 2022 — now. Licensed under the BSD 3-Clause License. See AUTHORS and LICENSE file for more details1.

Footnotes

  1. The work was supported by Sber AI and the Analytical center under the RF Government (subsidy agreement 000000D730321P5Q0002, Grant No. 70-2021-00145 02.11.2021).

Code for the paper One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation, CVPR 2021.

One Thing One Click One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation (CVPR2021) Code for the paper One Thi

44 Dec 12, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
Joint deep network for feature line detection and description

SOLD² - Self-supervised Occlusion-aware Line Description and Detection This repository contains the implementation of the paper: SOLD² : Self-supervis

Computer Vision and Geometry Lab 427 Dec 27, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022
OpenVisionAPI server

🚀 Quick start An instance of ova-server is free and publicly available here: https://api.openvisionapi.com Checkout ova-client for a quick demo. Inst

Open Vision API 93 Nov 24, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks

FinGAT: A Financial Graph Attention Networkto Recommend Top-K Profitable Stocks This is our implementation for the paper: FinGAT: A Financial Graph At

Yu-Che Tsai 64 Dec 13, 2022
NFNets and Adaptive Gradient Clipping for SGD implemented in PyTorch

PyTorch implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping Paper: https://arxiv.org/abs/2102.06171.pdf Original code: htt

Vaibhav Balloli 320 Jan 02, 2023
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Data and analysis code for an MS on SK VOC genomes phenotyping/neutralisation assays

Description Summary of phylogenomic methods and analyses used in "Immunogenicity of convalescent and vaccinated sera against clinical isolates of ance

Finlay Maguire 1 Jan 06, 2022
This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset.

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Up

19 Jan 16, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Rank 3 : Source code for OPPO 6G Data Generation Challenge

OPPO 6G Data Generation with an E2E Framework Homepage of OPPO 6G Data Generation Challenge Datasets H1_32T4R.mat H2_32T4R.mat Please put the original

Sen Pei 97 Jan 07, 2023
Code for paper "Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs"

This is the codebase for the paper: Do Language Models Have Beliefs? Methods for Detecting, Updating, and Visualizing Model Beliefs Directory Structur

Peter Hase 19 Aug 21, 2022
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
🛰️ List of earth observation companies and job sites

Earth Observation Companies & Jobs source Portals & Jobs Geospatial Geospatial jobs newsletter: ~biweekly newsletter with geospatial jobs by Ali Ahmad

Dahn 64 Dec 27, 2022