PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

Overview

PantheonRL

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. The goal of PantheonRL is to provide a modular and extensible framework for training agent policies, fine-tuning agent policies, ad-hoc pairing of agents, and more. PantheonRL also provides a web user interface suitable for lightweight experimentation and prototyping.

PantheonRL is built on top of StableBaselines3 (SB3), allowing direct access to many of SB3's standard RL training algorithms such as PPO. PantheonRL currently follows a decentralized training paradigm -- each agent is equipped with its own replay buffer and update algorithm. The agents objects are designed to be easily manipulable. They can be saved, loaded and plugged into different training procedures such as self-play, ad-hoc / cross-play, round-robin training, or finetuning.

This package will be presented as a demo at the AAAI-22 Demonstrations Program.

Demo Paper

Demo Video

"PantheonRL: A MARL Library for Dynamic Training Interactions"
Bidipta Sarkar*, Aditi Talati*, Andy Shih*, Dorsa Sadigh
In Proceedings of the 36th AAAI Conference on Artificial Intelligence (Demo Track), 2022

@inproceedings{sarkar2021pantheonRL,
  title={PantheonRL: A MARL Library for Dynamic Training Interactions},
  author={Sarkar, Bidipta and Talati, Aditi and Shih, Andy and Sadigh Dorsa},
  booktitle = {Proceedings of the 36th AAAI Conference on Artificial Intelligence (Demo Track)},
  year={2022}
}

Installation

# Optionally create conda environments
conda create -n PantheonRL python=3.7
conda activate PantheonRL

# Clone and install PantheonRL
git clone https://github.com/Stanford-ILIAD/PantheonRL.git
cd PantheonRL
pip install -e .

Overcooked Installation

# Optionally install Overcooked environment
git submodule update --init --recursive
pip install -e overcookedgym/human_aware_rl/overcooked_ai

PettingZoo Installation

# Optionally install PettingZoo environments
pip install pettingzoo

# to install a group of pettingzoo environments
pip install "pettingzoo[classic]"

Command Line Invocation

Example

python3 trainer.py LiarsDice-v0 PPO PPO --seed 10 --preset 1
# requires Overcooked installation (see above instructions)
python3 trainer.py OvercookedMultiEnv-v0 PPO PPO --env-config '{"layout_name":"simple"}' --seed 10 --preset 1

For examples on round-robin training followed by partner adaptation, check out these instructions.

For more examples, check out the examples/ directory.

Web User Interface

The first time the web interface is being run in a new location, the database must be initialized. After that, the init-db command should not be called again, because this will clear all user account data.

Set environment variables and (re)inititalize the database

export FLASK_APP=website
export FLASK_ENV=development
flask init-db

Start the web user interface. Make sure that ports 5000 and 5001 (used for Tensorboard) are not taken.

flask run --host=0.0.0.0 --port=5000


Agent selection screen. Users can customize the ego and partner agents.


Training screen. Users can view basic information, or spawn a Tensorboard tab for full monitoring.

Features

General Features PantheonRL
Documentation ✔️
Web user interface ✔️
Built on top of SB3 ✔️
Supports PettingZoo Envs ✔️
Environment Features PantheonRL
Frame stacking (recurrence) ✔️
Simultaneous multiagent envs ✔️
Turn-based multiagent envs ✔️
2-player envs ✔️
N-player envs ✔️
Custom environments ✔️
Training Features PantheonRL
Self-play ✔️
Ad-hoc / cross-play ✔️
Round-robin training ✔️
Finetune / adapt to new partners ✔️
Custom policies ✔️

Current Environments

Name Environment Type Reward Type Players Visualization
Rock Paper Scissors SimultaneousEnv Competitive 2
Liar's Dice TurnBasedEnv Competitive 2
Block World [1] TurnBasedEnv Cooperative 2 ✔️
Overcooked [2] SimultaneousEnv Cooperative 2 ✔️
PettingZoo [3] Mixed Mixed N ✔️

[1] Adapted from the block construction task from https://github.com/cogtoolslab/compositional-abstractions

[2] Adapted from the Human_Aware_Rl / Overcooked AI package from https://github.com/HumanCompatibleAI/human_aware_rl

[3] PettingZoo environments from https://github.com/Farama-Foundation/PettingZoo

Owner
Stanford Intelligent and Interactive Autonomous Systems Group
Stanford Intelligent and Interactive Autonomous Systems Group
Stanford Intelligent and Interactive Autonomous Systems Group
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
Pytorch implementation of One-Shot Affordance Detection

One-shot Affordance Detection PyTorch implementation of our one-shot affordance detection models. This repository contains PyTorch evaluation code, tr

46 Dec 12, 2022
Crowd-Kit is a powerful Python library that implements commonly-used aggregation methods for crowdsourced annotation and offers the relevant metrics and datasets

Crowd-Kit: Computational Quality Control for Crowdsourcing Documentation Crowd-Kit is a powerful Python library that implements commonly-used aggregat

Toloka 125 Dec 30, 2022
Pca-on-genotypes - Mini bioinformatics project - PCA on genotypes

Mini bioinformatics project: PCA on genotypes This repo contains the code from t

Maria Nattestad 8 Dec 04, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
NOMAD - A blackbox optimization software

################################################################################### #

Blackbox Optimization 78 Dec 29, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
TorchDistiller - a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and instance segmentation.

This project is a collection of the open source pytorch code for knowledge distillation, especially for the perception tasks, including semantic segmentation, depth estimation, object detection and i

yifan liu 147 Dec 03, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
Vanilla and Prototypical Networks with Random Weights for image classification on Omniglot and mini-ImageNet. Made with Python3.

vanilla-rw-protonets-project Vanilla Prototypical Networks and PNs with Random Weights for image classification on Omniglot and mini-ImageNet. Made wi

Giovani Candido 8 Aug 31, 2022
Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US simulation

AutomaticUSnavigation Investigating automatic navigation towards standard US views integrating MARL with the virtual US environment developed in CT2US

Cesare Magnetti 6 Dec 05, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022