Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Overview




[CVPR2020]Learning to Cartoonize Using White-box Cartoon Representations

project page | paper | twitter | zhihu | bilibili | facial model

Use cases

Scenery

Food

Indoor Scenes

People

More Images Are Shown In The Supplementary Materials

Online demo

Prerequisites

  • Training code: Linux or Windows
  • NVIDIA GPU + CUDA CuDNN for performance
  • Inference code: Linux, Windows and MacOS

How To Use

Installation

  • Assume you already have NVIDIA GPU and CUDA CuDNN installed
  • Install tensorflow-gpu, we tested 1.12.0 and 1.13.0rc0
  • Install scikit-image==0.14.5, other versions may cause problems

Inference with Pre-trained Model

  • Store test images in /test_code/test_images
  • Run /test_code/cartoonize.py
  • Results will be saved in /test_code/cartoonized_images

Train

  • Place your training data in corresponding folders in /dataset
  • Run pretrain.py, results will be saved in /pretrain folder
  • Run train.py, results will be saved in /train_cartoon folder
  • Codes are cleaned from production environment and untested
  • There may be minor problems but should be easy to resolve
  • Pretrained VGG_19 model can be found at following url: https://drive.google.com/file/d/1j0jDENjdwxCDb36meP6-u5xDBzmKBOjJ/view?usp=sharing

Datasets

  • Due to copyright issues, we cannot provide cartoon images used for training
  • However, these training datasets are easy to prepare
  • Scenery images are collected from Shinkai Makoto, Miyazaki Hayao and Hosoda Mamoru films
  • Clip films into frames and random crop and resize to 256x256
  • Portrait images are from Kyoto animations and PA Works
  • We use this repo(https://github.com/nagadomi/lbpcascade_animeface) to detect facial areas
  • Manual data cleaning will greatly increace both datasets quality

Acknowledgement

We are grateful for the help from Lvmin Zhang and Style2Paints Research

License

Citation

If you use this code for your research, please cite our paper:

@InProceedings{Wang_2020_CVPR, author = {Wang, Xinrui and Yu, Jinze}, title = {Learning to Cartoonize Using White-Box Cartoon Representations}, booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, month = {June}, year = {2020} }

中文社区

我们有一个除了技术什么东西都聊的以技术交流为主的宇宙超一流二次元相关技术交流吹水群“纸片协会”。如果你一次加群失败,可以多次尝试。

纸片协会总舵:184467946
Owner
Interested in I2I translation,style transfer and ACG related ML applications
Semi-automated OpenVINO benchmark_app with variable parameters

Semi-automated OpenVINO benchmark_app with variable parameters. User can specify multiple options for any parameters in the benchmark_app and the progam runs the benchmark with all combinations of gi

Yasunori Shimura 8 Apr 11, 2022
Official implementation of "Learning to Discover Cross-Domain Relations with Generative Adversarial Networks"

DiscoGAN Official PyTorch implementation of Learning to Discover Cross-Domain Relations with Generative Adversarial Networks. Prerequisites Python 2.7

SK T-Brain 754 Dec 29, 2022
StyleGAN2 with adaptive discriminator augmentation (ADA) - Official TensorFlow implementation

StyleGAN2 with adaptive discriminator augmentation (ADA) — Official TensorFlow implementation Training Generative Adversarial Networks with Limited Da

NVIDIA Research Projects 1.7k Dec 29, 2022
Videocaptioning.pytorch - A simple implementation of video captioning

pytorch implementation of video captioning recommend installing pytorch and pyth

Yiyu Wang 2 Jan 01, 2022
Negative Interactions for Improved Collaborative Filtering:

Negative Interactions for Improved Collaborative Filtering: Don’t go Deeper, go Higher This notebook provides an implementation in Python 3 of the alg

Harald Steck 21 Mar 05, 2022
Semantic-aware Grad-GAN for Virtual-to-Real Urban Scene Adaption

SG-GAN TensorFlow implementation of SG-GAN. Prerequisites TensorFlow (implemented in v1.3) numpy scipy pillow Getting Started Train Prepare dataset. W

lplcor 61 Jun 07, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
This repository implements variational graph auto encoder by Thomas Kipf.

Variational Graph Auto-encoder in Pytorch This repository implements variational graph auto-encoder by Thomas Kipf. For details of the model, refer to

DaehanKim 215 Jan 02, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Volumetric Correspondence Networks for Optical Flow, NeurIPS 2019.

VCN: Volumetric correspondence networks for optical flow [project website] Requirements python 3.6 pytorch 1.1.0-1.3.0 pytorch correlation module (opt

Gengshan Yang 144 Dec 06, 2022
Syllabus del curso IIC2115 - Programación como Herramienta para la Ingeniería 2022/I

IIC2115 - Programación como Herramienta para la Ingeniería Videos y tutoriales Tutorial CMD Tutorial Instalación Python y Jupyter Tutorial de git-GitH

21 Nov 09, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
SLAMP: Stochastic Latent Appearance and Motion Prediction

SLAMP: Stochastic Latent Appearance and Motion Prediction Official implementation of the paper SLAMP: Stochastic Latent Appearance and Motion Predicti

Kaan Akan 34 Dec 08, 2022
Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021)

Regularizing Nighttime Weirdness: Efficient Self-supervised Monocular Depth Estimation in the Dark (ICCV 2021) Kun Wang, Zhenyu Zhang, Zhiqiang Yan, X

kunwang 66 Nov 24, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
LONG-TERM SERIES FORECASTING WITH QUERYSELECTOR – EFFICIENT MODEL OF SPARSEATTENTION

Query Selector Here you can find code and data loaders for the paper https://arxiv.org/pdf/2107.08687v1.pdf . Query Selector is a novel approach to sp

MORAI 62 Dec 17, 2022
Codes for the AAAI'22 paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning"

TransZero [arXiv] This repository contains the testing code for the paper "TransZero: Attribute-guided Transformer for Zero-Shot Learning" accepted to

Shiming Chen 52 Jan 01, 2023
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Implementations of polygamma, lgamma, and beta functions for PyTorch

lgamma Implementations of polygamma, lgamma, and beta functions for PyTorch. It's very hacky, but that's usually ok for research use. To build, run: .

Rachit Singh 24 Nov 09, 2021
Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging"

Deep Optics for Single-shot High-dynamic-range Imaging Code associated with the paper "Deep Optics for Single-shot High-dynamic-range Imaging" CVPR, 2

Stanford Computational Imaging Lab 40 Dec 12, 2022