Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Overview

RuleRec

These are our datasets and implementation for the paper:

Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu, Shaoping Ma, and Xiang Ren. 2019. Jointly Learning Explainable Rules for Recommendation with Knowledge Graph. In TheWebConf'19.

Please cite our paper if you use our datasets or codes. Thanks!

@inproceedings{ma2019jointly,
  title={Jointly Learning Explainable Rules for Recommendation with Knowledge Graph},
  author={Ma, Weizhi and Zhang, Min and Cao, Yue and Jin, Woojeong and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping and Ren, Xiang},
  booktitle={The World Wide Web Conference},
  pages={1210--1221},
  year={2019},
  organization={ACM}
}

If you have any problem about this work, you can contact Weizhi Ma (mawz12 AT hotmail.com).

RuleRec Datasets

The constructed datasets (two scenarios: Amazon cellphone and Amazon electronic) can be found here, which contain several parts:

Recommendation Data:

train.txt, test.txt: user-item interaction data.

Formatting: 
	user id \t item id

item_dic.txt: A python dic, key = item id in Amazon, value = item id here.

Item Attributes:

title.txt, brand.txt, description.txt: item attributes.

Formatting: 
	item id in Amazon \t the title/brand/description of this item

Item Associations:

also_buy.txt, also_view.txt, buy_after_view.txt, buy_together.txt: item associations.

Formatting:
	item id in Amazon \t items that have also\_buy/also\_view/buy\_after\_view/buy\_together association with this item, split by ' '

Entity Linking Data:

title_entities.txt, brand_entities.txt, description_entities.txt: entity linking results on freebase.

Formatting:
	item id in Amazon \t entity name \t entity id in Freebase

Path data:

KGData/*/rule_score.txt: As Freebase is an extremely large knowledge graph, only the related paths in the knowledge graph are recorded in this file. The head and tail entity of each path linked by at least one item.

training_pairs.txt and usercandidates.txt are two files sampled for rule learning and recommendation. You can replace them with other sampling results. The formatting of training_pairs.txt is 'user id : [positive item id, negative item id]'.



Besides, the original Amazon datasets (including user-item interaction history and item associations) are provided by Professor Mcauley. You can download them here.

Rule Learning Codes

If you want to use these codes, you should download RuleRec dataset and put them together first.

getItemItemDic.py: Enumerate all possible rules.

selectRules.py: Rule selection (rule features for jointly learning will also be generated in this step).

getFeatures.py: Calculate features based on the selected rules for item recommendation.

Environments: Python 3.6.3

sklearn = 0.19.1

numpy = 1.13.3

# Example:
> python getItemItemDic.py Cellphone abu
> python selectRules.py Cellphone abu 50
> python getFeatures.py Cellphone abu 50

RuleRec(BPRMF) Codes:

This implementation is based on MyMediaLiteJava. Both codes and jar file are provided.

The evaluation datasets can be downloaded from here, which is generated from RuleRec Data and contains both rule selection features and rule features.

Environments: Java, version 1.6 or later

# Example 1: Use Cellphone dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-file=./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt 
# output:[email protected]=0.34968 [email protected]=0.48024 [email protected]=0.28287 [email protected] num_users=27840 num_items=100 num_lists=27840

# Example 2: Use Cellphone dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.2 --ruleselectTrain=./RuleRecInput/Cellphone/ruleselect/ --ruleselectResult=./RuleRecInput/Cellphone/ruleselect/ 
# output:[email protected]=0.36430 [email protected]=0.49429 [email protected]=0.29536 [email protected]=0.23214 num_users=27840 num_items=100 num_lists=27840

# Example 3: Use Electronic dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt 
# output:[email protected]=0.20694 [email protected]=0.29726 [email protected]=0.17284 [email protected]=0.13483 num_users=18223 num_items=100 num_lists=18223

# Example 4: Use Electronic dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.005 --ruleselectTrain=./RuleRecInput/Electronic/ruleselect/ --ruleselectResult=./RuleRecInput/Electronic/ruleselect/ 
# output:[email protected]=0.20798 [email protected]=0.29979 [email protected]=0.17407 [email protected]=0.13570 num_users=18223 num_items=100 num_lists=18223
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
Group-Buying Recommendation for Social E-Commerce

Group-Buying Recommendation for Social E-Commerce This is the official implementation of the paper Group-Buying Recommendation for Social E-Commerce (

Jun Zhang 37 Nov 28, 2022
This library intends to be a reference for recommendation engines in Python

Crab - A Python Library for Recommendation Engines

Marcel Caraciolo 85 Oct 04, 2021
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Attentive Social Recommendation: Towards User And Item Diversities

ASR This is a Tensorflow implementation of the paper: Attentive Social Recommendation: Towards User And Item Diversities Preprint, https://arxiv.org/a

Dongsheng Luo 1 Nov 14, 2021
Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions

Accuracy-Diversity Trade-off in Recommender Systems via Graph Convolutions This repository contains the code of the paper "Accuracy-Diversity Trade-of

2 Sep 16, 2022
Recommendation System to recommend top books from the dataset

recommendersystem Recommendation System to recommend top books from the dataset Introduction The recom.py is the main program code. The dataset is als

Vishal karur 1 Nov 15, 2021
Handling Information Loss of Graph Neural Networks for Session-based Recommendation

LESSR A PyTorch implementation of LESSR (Lossless Edge-order preserving aggregation and Shortcut graph attention for Session-based Recommendation) fro

Tianwen CHEN 62 Dec 03, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
A Python implementation of LightFM, a hybrid recommendation algorithm.

LightFM Build status Linux OSX (OpenMP disabled) Windows (OpenMP disabled) LightFM is a Python implementation of a number of popular recommendation al

Lyst 4.2k Jan 02, 2023
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022
Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks

Bi-TGCF Tensorflow Implementation of BiTGCF: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks. in CIKM20

17 Nov 30, 2022
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
Respiratory Health Recommendation System

Respiratory-Health-Recommendation-System Respiratory Health Recommendation System based on Air Quality Index Forecasts This project aims to provide pr

Abhishek Gawabde 1 Jan 29, 2022