Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Overview

RuleRec

These are our datasets and implementation for the paper:

Weizhi Ma, Min Zhang, Yue Cao, Woojeong Jin, Chenyang Wang, Yiqun Liu, Shaoping Ma, and Xiang Ren. 2019. Jointly Learning Explainable Rules for Recommendation with Knowledge Graph. In TheWebConf'19.

Please cite our paper if you use our datasets or codes. Thanks!

@inproceedings{ma2019jointly,
  title={Jointly Learning Explainable Rules for Recommendation with Knowledge Graph},
  author={Ma, Weizhi and Zhang, Min and Cao, Yue and Jin, Woojeong and Wang, Chenyang and Liu, Yiqun and Ma, Shaoping and Ren, Xiang},
  booktitle={The World Wide Web Conference},
  pages={1210--1221},
  year={2019},
  organization={ACM}
}

If you have any problem about this work, you can contact Weizhi Ma (mawz12 AT hotmail.com).

RuleRec Datasets

The constructed datasets (two scenarios: Amazon cellphone and Amazon electronic) can be found here, which contain several parts:

Recommendation Data:

train.txt, test.txt: user-item interaction data.

Formatting: 
	user id \t item id

item_dic.txt: A python dic, key = item id in Amazon, value = item id here.

Item Attributes:

title.txt, brand.txt, description.txt: item attributes.

Formatting: 
	item id in Amazon \t the title/brand/description of this item

Item Associations:

also_buy.txt, also_view.txt, buy_after_view.txt, buy_together.txt: item associations.

Formatting:
	item id in Amazon \t items that have also\_buy/also\_view/buy\_after\_view/buy\_together association with this item, split by ' '

Entity Linking Data:

title_entities.txt, brand_entities.txt, description_entities.txt: entity linking results on freebase.

Formatting:
	item id in Amazon \t entity name \t entity id in Freebase

Path data:

KGData/*/rule_score.txt: As Freebase is an extremely large knowledge graph, only the related paths in the knowledge graph are recorded in this file. The head and tail entity of each path linked by at least one item.

training_pairs.txt and usercandidates.txt are two files sampled for rule learning and recommendation. You can replace them with other sampling results. The formatting of training_pairs.txt is 'user id : [positive item id, negative item id]'.



Besides, the original Amazon datasets (including user-item interaction history and item associations) are provided by Professor Mcauley. You can download them here.

Rule Learning Codes

If you want to use these codes, you should download RuleRec dataset and put them together first.

getItemItemDic.py: Enumerate all possible rules.

selectRules.py: Rule selection (rule features for jointly learning will also be generated in this step).

getFeatures.py: Calculate features based on the selected rules for item recommendation.

Environments: Python 3.6.3

sklearn = 0.19.1

numpy = 1.13.3

# Example:
> python getItemItemDic.py Cellphone abu
> python selectRules.py Cellphone abu 50
> python getFeatures.py Cellphone abu 50

RuleRec(BPRMF) Codes:

This implementation is based on MyMediaLiteJava. Both codes and jar file are provided.

The evaluation datasets can be downloaded from here, which is generated from RuleRec Data and contains both rule selection features and rule features.

Environments: Java, version 1.6 or later

# Example 1: Use Cellphone dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-file=./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt 
# output:[email protected]=0.34968 [email protected]=0.48024 [email protected]=0.28287 [email protected] num_users=27840 num_items=100 num_lists=27840

# Example 2: Use Cellphone dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Cellphone/trainingSet.txt --test-./RuleRecInput/Cellphone/testSet.txt --candidateFile=./RuleRecInput/Cellphone/candidates.txt --trainingPairFile=./RuleRecInput/Cellphone/trainingPairs.txt --trainingFeatures=./RuleRecInput/Cellphone/trainingFeatures.txt --testFeatures=./RuleRecInput/Cellphone/testFeatures.txt --learningRate=0.1 --usermodel=0 --iter-times=30 --rule-weight=0.005  --ruleWeightNumber=200 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.2 --ruleselectTrain=./RuleRecInput/Cellphone/ruleselect/ --ruleselectResult=./RuleRecInput/Cellphone/ruleselect/ 
# output:[email protected]=0.36430 [email protected]=0.49429 [email protected]=0.29536 [email protected]=0.23214 num_users=27840 num_items=100 num_lists=27840

# Example 3: Use Electronic dataset
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt 
# output:[email protected]=0.20694 [email protected]=0.29726 [email protected]=0.17284 [email protected]=0.13483 num_users=18223 num_items=100 num_lists=18223

# Example 4: Use Electronic dataset with jointly learning
> java -jar BPRMF.jar --recommender=BPRMF --training-file=./RuleRecInput/Electronic/trainingSet.txt --test-file=./RuleRecInput/Electronic/testSet.txt --candidateFile=./RuleRecInput/Electronic/candidates.txt --trainingPairFile=./RuleRecInput/Electronic/trainingPairs.txt --trainingFeatures=./RuleRecInput/Electronic/trainingFeatures.txt --testFeatures=./RuleRecInput/Electronic/testFeatures.txt --learningRate=0.05 --ruleWeightNumber=200 --usermodel=0 --iter-times=30 --rule-weight=0.01 --resultFile=result.txt --trainTogether=2  --lossType=sigmoid --lossCombineRate=0.005 --ruleselectTrain=./RuleRecInput/Electronic/ruleselect/ --ruleselectResult=./RuleRecInput/Electronic/ruleselect/ 
# output:[email protected]=0.20798 [email protected]=0.29979 [email protected]=0.17407 [email protected]=0.13570 num_users=18223 num_items=100 num_lists=18223
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
Code for MB-GMN, SIGIR 2021

MB-GMN Code for MB-GMN, SIGIR 2021 For Beibei data, run python .\labcode.py For Tmall data, run python .\labcode.py --data tmall --rank 2 For IJCAI

32 Dec 04, 2022
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Reinforcement Knowledge Graph Reasoning for Explainable Recommendation

Reinforcement Knowledge Graph Reasoning for Explainable Recommendation This repository contains the source code of the SIGIR 2019 paper "Reinforcement

Yikun Xian 197 Dec 28, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
reXmeX is recommender system evaluation metric library.

A general purpose recommender metrics library for fair evaluation.

AstraZeneca 258 Dec 22, 2022
Recommender systems are the systems that are designed to recommend things to the user based on many different factors

Recommender systems are the systems that are designed to recommend things to the user based on many different factors. The recommender system deals with a large volume of information present by filte

Happy N. Monday 3 Feb 15, 2022
6002project-rl - An implemention of offline RL on recommender system

An implemention of offline RL on recommender system @author: misajie @update: 20

Tzay Lee 3 May 24, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
Movies/TV Recommender

recommender Movies/TV Recommender. Recommends Movies, TV Shows, Actors, Directors, Writers. Setup Create file API_KEY and paste your TMDB API key in i

Aviem Zur 3 Apr 22, 2022
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
A Python scikit for building and analyzing recommender systems

Overview Surprise is a Python scikit for building and analyzing recommender systems that deal with explicit rating data. Surprise was designed with th

Nicolas Hug 5.7k Jan 01, 2023
[ICDMW 2020] Code and dataset for "DGTN: Dual-channel Graph Transition Network for Session-based Recommendation"

DGTN: Dual-channel Graph Transition Network for Session-based Recommendation This repository contains PyTorch Implementation of ICDMW 2020 (NeuRec @ I

Yujia 25 Nov 17, 2022
Self-supervised Graph Learning for Recommendation

SGL This is our Tensorflow implementation for our SIGIR 2021 paper: Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,and Xing

151 Dec 20, 2022
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Books Recommendation With Python

Books-Recommendation Business Problem During the last few decades, with the rise

Çağrı Karadeniz 7 Mar 12, 2022
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022