Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Related tags

Machine Learningnndc
Overview

Neighbourhood Retrieval with Distance Correlation

Assign Pseudo class labels to datapoints in the latent space.

  • NNDC is a slim wrapper around FAISS.
  • NNDC transforms the space such that the Inner Product Index in FAISS (IndexFlatIP) computes the Distance Correlation.
  • Support for KernelPCA (non-linear PCA) for dimensionality reduction.

Installation

pip install git+https://github.com/The-Learning-Machines/nndc

Usage

dim = 128 
n = 20000

import nndc
import numpy as np

index = nndc.DCIndex(
    in_dim=dim, # Dimensionality of the input vectors
    threshold=0.2, # How far away from a vector is the neighbourhood
    out_dim=32, # Dimensionality of the vectors after PCA (only needed if using PCA)
    use_pca=True, # Use KernelPCA
    verbose=True,
    kernel="rbf" # Use Radial Basis Function as the kernel for KernelPCA
)

# Generate Random data
np.random.seed(1234)             
xb = np.random.random((n, dim)).astype('float32')
xb[:, 0] += np.arange(n) / 1000.
xq = np.random.random((100, dim)).astype('float32')
xq[:, 0] += np.arange(100) / 1000.

# Fit KernelPCA
index.add_pca_training_data(xb[:1000, :])
index.fit_pca()

# Add vectors to the Index
vector_ids = np.arange(xb.shape[0])
index.add(xb, vector_ids)

# Build a nerighbourhood graph
index.build_neighbourhood()

# Query the neighbours of vector with ID=0
neighbour_ids, neighbour_similarity = index[0]   
Owner
The Learning Machines
The Learning Machines
This is a Machine Learning model which predicts the presence of Diabetes in Patients

Diabetes Disease Prediction This is a machine Learning mode which tries to determine if a person has a diabetes or not. Data The dataset is in comma s

Edem Gold 4 Mar 16, 2022
Implementation of K-Nearest Neighbors Algorithm Using PySpark

KNN With Spark Implementation of KNN using PySpark. The KNN was used on two separate datasets (https://archive.ics.uci.edu/ml/datasets/iris and https:

Zachary Petroff 4 Dec 30, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
vortex particles for simulating smoke in 2d

vortex-particles-method-2d vortex particles for simulating smoke in 2d -vortexparticles_s

12 Aug 23, 2022
A GitHub action that suggests type annotations for Python using machine learning.

Typilus: Suggest Python Type Annotations A GitHub action that suggests type annotations for Python using machine learning. This action makes suggestio

40 Sep 18, 2022
Simple, light-weight config handling through python data classes with to/from JSON serialization/deserialization.

Simple but maybe too simple config management through python data classes. We use it for machine learning.

Eren Gölge 67 Nov 29, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.

Website | Documentation | Tutorials | Installation | Release Notes CatBoost is a machine learning method based on gradient boosting over decision tree

CatBoost 6.9k Jan 05, 2023
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
XAI - An eXplainability toolbox for machine learning

XAI - An eXplainability toolbox for machine learning XAI is a Machine Learning library that is designed with AI explainability in its core. XAI contai

The Institute for Ethical Machine Learning 875 Dec 27, 2022
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Automated Machine Learning with scikit-learn

auto-sklearn auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. Find the documentation here

AutoML-Freiburg-Hannover 6.7k Jan 07, 2023
Self Organising Map (SOM) for clustering of atomistic samples through unsupervised learning.

Self Organising Map for Clustering of Atomistic Samples - V2 Description Self Organising Map (also known as Kohonen Network) implemented in Python for

Franco Aquistapace 0 Nov 16, 2021
🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

🌲 Implementation of the Robust Random Cut Forest algorithm for anomaly detection on streams

Real-time water systems lab 416 Jan 06, 2023
A Python package to preprocess time series

Disclaimer: This package is WIP. Do not take any APIs for granted. tspreprocess Time series can contain noise, may be sampled under a non fitting rate

Maximilian Christ 57 Dec 17, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
An open-source library of algorithms to analyse time series in GPU and CPU.

An open-source library of algorithms to analyse time series in GPU and CPU.

Shapelets 216 Dec 30, 2022
TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters.

TensorFlowOnSpark TensorFlowOnSpark brings scalable deep learning to Apache Hadoop and Apache Spark clusters. By combining salient features from the T

Yahoo 3.8k Jan 04, 2023