Implementation of parameterized soft-exponential activation function.

Overview

Soft-Exponential-Activation-Function:

Implementation of parameterized soft-exponential activation function. In this implementation, the parameters are the same for all neurons initially starting with -0.01. This activation function revolves around the idea of a "soft" exponential function. The soft-exponential function is a function that is very similar to the exponential function, but it is not as steep at the beginning and it is more gradual at the end. The soft-exponential function is a good choice for neural networks that have a lot of connections and a lot of neurons.

This activation function is under the idea that the function is logarithmic, linear, exponential and smooth.

The equation for the soft-exponential function is:

$$ f(\alpha,x)= \left{ \begin{array}{ll} -\frac{ln(1-\alpha(x + \alpha))}{\alpha} & \alpha < 0\ x & \alpha = 0 \ \frac{e^{\alpha x} - 1}{\alpha} + \alpha & \alpha > 0 \ \end{array} \right. $$

Problems faced:

1. Misinformation about the function

From a paper by A continuum among logarithmic, linear, and exponential functions, and its potential to improve generalization in neural networks, here in Figure 2, the soft-exponential function is shown as a logarithmic function. This is not the case.

Figure Given

The real figure should be shown here:

Figure Truth

Here we can see in some cases the soft-exponential function is undefined for some values of $\alpha$,$x$ and $\alpha$,$x$ is not a constant.

2. Negative values inside logarithm

Here comes the tricky part. The soft-exponential function is defined for all values of $\alpha$ and $x$. However, the logarithm is not defined for negative values.

In the issues under Keras, one of the person has suggested to use the following function $sinh^{-1}()$ instead of the $\ln()$.

3. Initialization of alpha

Starting with an initial value of -0.01, the soft-exponential function was steep at the beginning and it is more gradual at the end. This was a good idea.

Performance:

First picture showing the accuracy of the soft-exponential function.

Figure 1

This shows the loss of the soft-exponential function.

Figure 2

Model Structure:

_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 28, 28)]          0         
                                                                 
 flatten (Flatten)           (None, 784)               0         
                                                                 
 dense_layer (Dense_layer)   (None, 128)               100480    
                                                                 
 parametric_soft_exp (Parame  (None, 128)              128       
 tricSoftExp)                                                    
                                                                 
 dense_layer_1 (Dense_layer)  (None, 128)              16512     
                                                                 
 parametric_soft_exp_1 (Para  (None, 128)              128       
 metricSoftExp)                                                  
                                                                 
 dense (Dense)               (None, 10)                1290      
                                                                 
=================================================================
Total params: 118,538
Trainable params: 118,538
Non-trainable params: 0

Acknowledgements:

Owner
Shuvrajeet Das
Tech Guy with a dedicated interest in learning new kinds of stuff. Sophomore @ 2021.
Shuvrajeet Das
Lightweight tool to perform MITM attack on local network

ARPSpy - A lightweight tool to perform MITM attack Using many library to perform ARP Spoof and auto-sniffing HTTP packet containing credential. (Never

MinhItachi 8 Aug 28, 2022
CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery

CoANet: Connectivity Attention Network for Road Extraction From Satellite Imagery This paper (CoANet) has been published in IEEE TIP 2021. This code i

Jie Mei 53 Dec 03, 2022
pytorch implementation of trDesign

trdesign-pytorch This repository is a PyTorch implementation of the trDesign paper based on the official TensorFlow implementation. The initial port o

Learn Ventures Inc. 41 Dec 29, 2022
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Our solution for SSN Invente 2021's Hackathon

Our solution for SSN Invente 2021's Hackathon. To help maitain godowns in a pristine and safe condition using raspberry pi.

1 Jan 12, 2022
Deep Networks with Recurrent Layer Aggregation

RLA-Net: Recurrent Layer Aggregation Recurrence along Depth: Deep Networks with Recurrent Layer Aggregation This is an implementation of RLA-Net (acce

Joy Fang 21 Aug 16, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
This repository contains the scripts for downloading and validating scripts for the documents

HC4: HLTCOE CLIR Common-Crawl Collection This repository contains the scripts for downloading and validating scripts for the documents. Document ids,

JHU Human Language Technology Center of Excellence 6 Jun 07, 2022
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
Explainable Zero-Shot Topic Extraction

Zero-Shot Topic Extraction with Common-Sense Knowledge Graph This repository contains the code for reproducing the results reported in the paper "Expl

D2K Lab 56 Dec 14, 2022
JAX-based neural network library

Haiku: Sonnet for JAX Overview | Why Haiku? | Quickstart | Installation | Examples | User manual | Documentation | Citing Haiku What is Haiku? Haiku i

DeepMind 2.3k Jan 04, 2023
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Pytorch implementation of U-Net, R2U-Net, Attention U-Net, and Attention R2U-Net.

pytorch Implementation of U-Net, R2U-Net, Attention U-Net, Attention R2U-Net U-Net: Convolutional Networks for Biomedical Image Segmentation https://a

leejunhyun 2k Jan 02, 2023
Code and data for ImageCoDe, a contextual vison-and-language benchmark

ImageCoDe This repository contains code and data for ImageCoDe: Image Retrieval from Contextual Descriptions. Data All collected descriptions for the

McGill NLP 27 Dec 02, 2022
A PyTorch Image-Classification With AlexNet And ResNet50.

PyTorch 图像分类 依赖库的下载与安装 在终端中执行 pip install -r -requirements.txt 完成项目依赖库的安装 使用方式 数据集的准备 STL10 数据集 下载:STL-10 Dataset 存储位置:将下载后的数据集中 train_X.bin,train_y.b

FYH 4 Feb 22, 2022