Async-first dependency injection library based on python type hints

Overview

Dependency Depression

Async-first dependency injection library based on python type hints

Quickstart

First let's create a class we would be injecting:

class Test:
    pass

Then we should create instance of container and register our Test class in it, we would use Callable provider that would simply call our class, since classes are also callables!

from dependency_depression import Depression, Callable

container = Depression()
container.register(Test, Callable(Test))

Then we should create a context and resolve our class from it:

with container.sync_context() as ctx:
    ctx.resolve(Test)
    # < __main__.Test>

Injecting

To mark parameters for injection mark them with typing.Annotated and Inject marker

from typing import Annotated
from dependency_depression import Callable, Depression, Inject


def create_number() -> int:
    return 42


def create_str(number: Annotated[int, Inject]) -> str:
    return str(number)

container = Depression()
container.register(str, Callable(create_str))
container.register(int, Callable(create_number))

with container.sync_context() as ctx:
    string = ctx.resolve(str)
    print(string, type(string))
    # 42 
   

Providers

When creating a provider you should specify the type it returns, but it can be inferred from class type or function return type:

from dependency_depression import Callable

provider = Callable(int)
# Is the same as Callable(factory=int, impl=int)
assert provider.provide_sync() == 0

Example using factory function, impl is inferred from return type hint:

from dependency_depression import Callable


def create_foo() -> str:
    return "foo"


provider = Callable(create_foo)
assert provider.provide_sync() == "foo"
assert provider.impl is str

This all comes into play when you have multiple implementations for base class and want to retrieve individual providers from a container,
let's register two concrete classes under same interface:

from dependency_depression import Depression, Callable


class Base:
    pass


class ConcreteA(Base):
    pass


class ConcreteB(Base):
    pass


container = Depression()
container.register(Base, Callable(ConcreteA))
container.register(Base, Callable(ConcreteB))

with container.sync_context() as ctx:
    a = ctx.resolve(Base, ConcreteA)  # <__main__.ConcreteA>
    b = ctx.resolve(Base, ConcreteB)  # <__main__.ConcreteB>
    
    # This would raise an error since we have two classes registered as `Base`
    ctx.resolve(Base)

If you have multiple classes registered under same interface you can specify concrete class using Impl marker:

from typing import Annotated
from dependency_depression import Inject, Impl


class Injectee:
    def __init__(
        self,
        a: Annotated[Base, Inject, Impl[ConcreteA]],
        b: Annotated[Base, Inject, Impl[ConcreteB]],
    ):
        pass

You can also just register concrete classes instead:

container.register(ConcreteA, Callable(ConcreteA))
container.register(ConcreteB, Callable(ConcreteB))

class Injectee:
    def __init__(
        self,
        a: Annotated[ConcreteA, Inject],
        b: Annotated[ConcreteB, Inject],
    ):
        pass

Generics

Dependency Depression can also be used with Generics:

T: raise NotImplementedError class UserRepository(IRepository[User]): def get(self, identity: int) -> User: return User(id=identity, username="Username") class ItemRepository(IRepository[Item]): def get(self, identity: int) -> Item: return Item(id=identity, title="Title") class Injectee: def __init__( self, user_repository: Annotated[IRepository[User], Inject], item_repository: Annotated[IRepository[Item], Inject], ): self.user_repository = user_repository self.item_repository = item_repository container = Depression() container.register(IRepository[User], Callable(UserRepository)) container.register(IRepository[Item], Callable(ItemRepository)) container.register(Injectee, Callable(Injectee)) with container.sync_context() as ctx: injectee = ctx.resolve(Injectee) injectee.user_repository # < __main__.UserRepository> injectee.item_repository # <__main__.ItemRepository>">
import dataclasses
from typing import Generic, TypeVar, Annotated

from dependency_depression import Inject, Depression, Callable

T = TypeVar("T")


@dataclasses.dataclass
class User:
    id: int
    username: str


@dataclasses.dataclass
class Item:
    id: int
    title: str


class IRepository(Generic[T]):
    def get(self, identity: int) -> T:
        raise NotImplementedError


class UserRepository(IRepository[User]):
    def get(self, identity: int) -> User:
        return User(id=identity, username="Username")

    
class ItemRepository(IRepository[Item]):
    def get(self, identity: int) -> Item:
        return Item(id=identity, title="Title")

    
class Injectee:
    def __init__(
        self,
        user_repository: Annotated[IRepository[User], Inject],
        item_repository: Annotated[IRepository[Item], Inject],
    ):
        self.user_repository = user_repository
        self.item_repository = item_repository


container = Depression()
container.register(IRepository[User], Callable(UserRepository))
container.register(IRepository[Item], Callable(ItemRepository))
container.register(Injectee, Callable(Injectee))

with container.sync_context() as ctx:
    injectee = ctx.resolve(Injectee)
    injectee.user_repository
    # < __main__.UserRepository>
    injectee.item_repository
    # <__main__.ItemRepository>

Context

Context as meant to be used within application or request scope, it keeps instances cache and an ExitStack to close all resources.

Cache

Context keeps cache of all instances, so they won't be created again, unless use_cache=False or NoCache is used.

In this example passing use_cache=False would cause context to create instance of Test again, however it wouldn't be cached:

from dependency_depression import Callable, Depression


class Test:
    pass


container = Depression()
container.register(Test, Callable(Test))

with container.sync_context() as ctx:
    first = ctx.resolve(Test)
    
    assert first is not ctx.resolve(Test, use_cache=False)
    # first is still cached in context
    assert first is ctx.resolve(Test)

Closing resources using context managers

Context would also use functions decorated with contextlib.contextmanager or contextlib.asyncontextmanager, but it won't use other instances of ContextManager.
Note that you're not passing impl parameter should specify return type using Iterable, Generator or their async counterparts - AsyncIterableand AsyncGenerator:

import contextlib
from typing import Iterable

from dependency_depression import Depression, Callable


@contextlib.contextmanager
def contextmanager() -> Iterable[int]:
    yield 42


class ContextManager:
    def __enter__(self):
        # This would never be called
        raise ValueError

    def __exit__(self, exc_type, exc_val, exc_tb):
        pass


container = Depression()

# Without return type hint you can specify impl parameter:
# container.register(int, Callable(contextmanager, int))
container.register(int, Callable(contextmanager))
container.register(ContextManager, Callable(ContextManager))

with container.sync_context() as ctx:
    number = ctx.resolve(int)  # 42
    ctx_manager = ctx.resolve(ContextManager) # __enter__ would not be called
    with ctx_manager:
        ...
        # Oops, ValueError raised

In case you need to manage lifecycle of your objects you should wrap them in a context manager:

import contextlib
from typing import AsyncGenerator

from dependency_depression import Callable, Depression
from sqlalchemy.ext.asyncio import AsyncSession


@contextlib.asynccontextmanager
async def get_session() -> AsyncGenerator[AsyncSession, None]:
    session = AsyncSession()
    async with session:
        try:
            yield session
        except Exception:
            await session.rollback()
            raise

container = Depression()
container.register(AsyncSession, Callable(AsyncSession))

@Inject decorator

@inject decorator allows you to automatically inject parameters into functions:

from typing import Annotated

from dependency_depression import Callable, Depression, Inject, inject


@inject
def injectee(number: Annotated[int, Inject]):
    return number


container = Depression()
container.register(int, Callable(int))

with container.sync_context():
    print(injectee())
    # 0

Without active context number parameter would not be injected:

injectee()
# TypeError: injectee() missing 1 required positional argument: 'number'

But you still can use your function just fine

print(injectee(42))

You can pass parameters even if you have an active context:

with container.sync_context():
    print(injectee())  # 0, injected
    print(injectee(42))  # 42, provided by user

Usage with Asyncio

Dependency Depression can be used in async context, just use context instead of sync_context:

import asyncio

from dependency_depression import Callable, Depression


async def get_number() -> int:
    await asyncio.sleep(1)
    return 42


async def main():
    container = Depression()
    container.register(int, Callable(get_number))
    async with container.context() as ctx:
        number = await ctx.resolve(int)
        assert number == 42


if __name__ == '__main__':
    asyncio.run(main())

Async context also supports both sync and async context managers and factory functions.

Owner
Doctor
Doctor
Urban Big Data Centre Housing Sensor Project

Housing Sensor Project The Urban Big Data Centre is conducting a study of indoor environmental data in Scottish houses. We are using Raspberry Pi devi

Jeremy Singer 2 Dec 13, 2021
NeoInterface - Neo4j made easy for Python programmers!

Neointerface - Neo4j made easy for Python programmers! A Python interface to use the Neo4j graph database, and simplify its use. class NeoInterface: C

15 Dec 15, 2022
Make your Discord Account Online 24/7!

Online-Forever Make your Discord Account Online 24/7! A Code written in Python that helps you to keep your account 24/7. The main.py is the main file.

SealedSaucer 0 Mar 16, 2022
Kubernetes-native workflow automation platform for complex, mission-critical data and ML processes at scale. It has been battle-tested at Lyft, Spotify, Freenome, and others and is truly open-source.

Flyte Flyte is a workflow automation platform for complex, mission-critical data, and ML processes at scale Home Page · Quick Start · Documentation ·

Flyte 3k Jan 01, 2023
This script is written with Python for selling steam community items automatically.

SteamCommunityItemAutoSell Description This script is written with Python for selling steam community items automatically. Install git clone https://g

14 Oct 26, 2022
Find Transposon Element insertions using long reads (nanopore), by alignment directly. (minimap2)

find_te_ins find_te_ins is designed to find Transposon Element (TE) insertions using long reads (nanopore), by alignment directly. (minimap2) Install

Ming Wang 1 Feb 09, 2022
- Auto join teams teams ( from calendar invite )

Auto Join Teams Meetings Requirements: Python 3.7 or higher Latest Google Chrome This script automatically logins to your account and joins the meetin

Prajin Khadka 10 Aug 20, 2022
Gba-free-fonts - Free font resources for GBA game development

gba-free-fonts Free font resources for GBA game development This repo contains m

28 Dec 30, 2022
Manage Procfile-based applications

Foreman Manage Procfile-based applications Installation $ gem install foreman Ruby users should take care not to install foreman in their project's G

David Dollar 5.8k Jan 03, 2023
Paxos in Python, tested with Jepsen

Python implementation of Multi-Paxos with a stable leader and reconfiguration, roughly following "Paxos Made Moderately Complex". Run python3 paxos/st

A. Jesse Jiryu Davis 25 Dec 15, 2022
Gerador de dafaces

🎴 DefaceGenerator Obs: esse script foi criado com a intenção de ajudar pessoas iniciantes no hacking que ainda não conseguem criar suas próprias defa

LordShinigami 3 Jan 09, 2022
This is the repo for Uncertainty Quantification 360 Toolkit.

UQ360 The Uncertainty Quantification 360 (UQ360) toolkit is an open-source Python package that provides a diverse set of algorithms to quantify uncert

International Business Machines 207 Dec 30, 2022
Python client SDK designed to simplify integrations by automating key generation and certificate enrollment using Venafi machine identity services.

This open source project is community-supported. To report a problem or share an idea, use Issues; and if you have a suggestion for fixing the issue,

Venafi, Inc. 13 Sep 27, 2022
Larvamatch - Find your larva or punk match.

LarvaMatch Find your larva or punk match. UI TBD API (not started) The API will allow you to specify a punk by token id to find a larva match, and vic

1 Jan 02, 2022
Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store.

Digdata presented 'BrandX' as a clothing brand that wants to know the best places to set up a 'pop up' store. I used the dataset given to write a program that ranks these places.

Mahmoud 1 Dec 11, 2021
List of all D&D 5e monsters: WotC + popular third-party sourcebooks

Xio's Guide to Monsters If you're a DM like me, and you have multiple sources of D&D 5e monsters that include WotC as well as third-party suppliers, y

20 Jan 06, 2023
ToDoListAndroid - To-do list application created using Kivymd

ToDoListAndroid To-do list application created using Kivymd. Version 1.0.0 (1/Jan/2022). Planned to do next: -Add setting (theme selector, etc) -Add f

AghnatHs 1 Jan 01, 2022
A jokes python module

Made with Python3 (C) @FayasNoushad Copyright permission under MIT License License - https://github.com/FayasNoushad/Jokes/blob/main/LICENSE Deploy

Fayas Noushad 3 Nov 28, 2021
Visualize Data From Stray Scanner https://keke.dev/blog/2021/03/10/Stray-Scanner.html

StrayVisualizer A set of scripts to work with data collected using Stray Scanner. Usage Installing Dependencies Install dependencies with pip -r requi

Kenneth Blomqvist 45 Dec 30, 2022
Tracking development of the Class Schedule Siri Shortcut, an iOS program that checks the type of school day and tells you class scheduling.

Class Schedule Shortcut Tracking development of the Class Schedule Siri Shortcut, an iOS program that checks the type of school day and tells you clas

3 Jun 28, 2022