ARU-Net - Deep Learning Chinese Word Segment

Overview

ARU-Net: A Neural Pixel Labeler for Layout Analysis of Historical Documents

Contents

Introduction

This is the Tensorflow code corresponding to A Two-Stage Method for Text Line Detection in Historical Documents . This repo contains the neural pixel labeling part described in the paper. It contains the so-called ARU-Net (among others) which is basically an extended version of the well known U-Net [2]. Besides the model and the basic workflow to train and test models, different data augmentation strategies are implemented to reduce the amound of training data needed. The repo's features are summarized below:

  • Inference Demo
    • Trained and freezed tensorflow graph included
    • Easy to reuse for own inference tests
  • Workflow
    • Full training workflow to parametrize and train your own models
    • Contains different models, data augmentation strategies, loss functions
    • Training on specific GPU, this enables the training of several models on a multi GPU system in parallel
    • Easy validation for trained model either using classical or ema-shadow weights

Please cite [1] if you find this repo useful and/or use this software for own work.

Installation

  1. Use python 2.7
  2. Any version of tensorflow version > 1.0 should be ok.
  3. Python packages: matplotlib (>=1.3.1), pillow (>=2.1.0), scipy (>=1.0.0), scikit-image (>=0.13.1), click (>=5.x)
  4. Clone the Repo
  5. Done

Demo

To run the demo follow:

  1. Open a shell
  2. Make sure Tensorflow is available, e.g., go to docker environment, activate conda, ...
  3. Navigate to the repo folder YOUR_PATH/ARU-Net/
  4. Run:
python run_demo_inference.py 

The demo will load a trained model and perform inference for five sample images of the cBad test set [3], [4]. The network was trained to predict the position of baselines and separators for the begining and end of each text line. After running the python script you should see a matplot window. To go to the next image just close it.

Example

The example images are sampled from the cBad test set [3], [4]. One image along with its results are shown below.

image_1 image_2 image_3

Training

This section describes step-by-step the procedure to train your own model.

Train data:

The following describes how the training data should look like:

  • The images along with its pixel ground truth have to be in the same folder
  • For each image: X.jpg, there have to be images named X_GT0.jpg, X_GT1.jpg, X_GT2.jpg, ... (for each channel to be predicted one GT image)
  • Each ground truth image is binary and contains ones at positions where the corresponding class is present and zeros otherwise (see demo_images/demo_traindata for a sample)
  • Generate a list containing row-wise the absolute pathes to the images (just the document images not the GT ones)

Val data:

The following describes how the validation data should look like:

Train the model:

The following describes how to train a model:

  • Have a look at the pix_lab/main/train_aru.py script
  • Parametrize it like you wish (have a look at the data_provider, cost and optimizer scripts to see all parameters)
  • Setting the correct paths, adapting the number of output classes and using the default parametrization should work fine for a first training
  • Run:
python -u pix_lab/main/train_aru.py &> info.log 

Validate the model:

The following describes how to validate a trained model:

  • Train and val losses are printed in info.log
  • To validate the checkpoints using the classical weights as well as its ema-shadows, adapt and run:
pix_lab/main/validate_ckpt.py

Comments

If you are interested in a related problem, this repo could maybe help you as well. The ARU-Net can be used for each pixel labeling task, besides the baseline detection task, it can be easily used for, e.g., binarization, page segmentation, ... purposes.

References

Please cite [1] if using this code.

A Two-Stage Method for Text Line Detection in Historical Documents

[1] T. Grüning, G. Leifert, T. Strauß, R. Labahn, A Two-Stage Method for Text Line Detection in Historical Documents

@article{Gruning2018,
arxivId = {1802.03345},
author = {Gr{\"{u}}ning, Tobias and Leifert, Gundram and Strau{\ss}, Tobias and Labahn, Roger},
title = {{A Two-Stage Method for Text Line Detection in Historical Documents}},
url = {http://arxiv.org/abs/1802.03345},
year = {2018}
}

U-Net: Convolutional Networks for Biomedical Image Segmentation

[2] O. Ronneberger, P, Fischer, T, Brox, U-Net: Convolutional Networks for Biomedical Image Segmentation

@article{Ronneberger2015,
arxivId = {1505.04597},
author = {Ronneberger, Olaf and Fischer, Philipp and Brox, Thomas},
journal = {Miccai},
pages = {234--241},
title = {{U-Net: Convolutional Networks for Biomedical Image Segmentation}},
year = {2015}
}

READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

[3] T. Grüning, R. Labahn, M. Diem, F. Kleber, S. Fiel, READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents

@article{Gruning2017,
arxivId = {1705.03311},
author = {Gr{\"{u}}ning, Tobias and Labahn, Roger and Diem, Markus and Kleber, Florian and Fiel, Stefan},
title = {{READ-BAD: A New Dataset and Evaluation Scheme for Baseline Detection in Archival Documents}},
url = {http://arxiv.org/abs/1705.03311},
year = {2017}
}

A Robust and Binarization-Free Approach for Text Line Detection in Historical Documents

[4] M. Diem, F. Kleber, S. Fiel, T. Grüning, B. Gatos, ScriptNet: ICDAR 2017 Competition on Baseline Detection in Archival Documents (cBAD)

@misc{Diem2017,
author = {Diem, Markus and Kleber, Florian and Fiel, Stefan and Gr{\"{u}}ning, Tobias and Gatos, Basilis},
doi = {10.5281/zenodo.257972},
title = {ScriptNet: ICDAR 2017 Competition on Baseline Detection in Archival Documents (cBAD)},
year = {2017}
}
Detect and fix skew in images containing text

Alyn Skew detection and correction in images containing text Image with skew Image after deskew Install and use via pip! Recommended way(using virtual

Kakul 230 Dec 21, 2022
A selectional auto-encoder approach for document image binarization

The code of this repository was used for the following publication. If you find this code useful please cite our paper: @article{Gallego2019, title =

Javier Gallego 89 Nov 18, 2022
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Textboxes_plusplus implementation with Tensorflow (python)

TextBoxes++-TensorFlow TextBoxes++ re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modifie

81 Dec 07, 2022
Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks?

Can We Find Neurons that Cause Unrealistic Images in Deep Generative Networks? Artifact Detection/Correction - Offcial PyTorch Implementation This rep

CHOI HWAN IL 23 Dec 20, 2022
Programa que viabiliza a OCR (Optical Character Reading - leitura óptica de caracteres) de um PDF.

Este programa tem o intuito de ser um modificador de arquivos PDF. Os arquivos PDFs podem ser 3: PDFs verdadeiros - em que podem ser selecionados o ti

Daniel Soares Saldanha 2 Oct 11, 2021
Text recognition (optical character recognition) with deep learning methods.

What Is Wrong With Scene Text Recognition Model Comparisons? Dataset and Model Analysis | paper | training and evaluation data | failure cases and cle

Clova AI Research 3.2k Jan 04, 2023
Official code for "Bridging Video-text Retrieval with Multiple Choice Questions", CVPR 2022 (Oral).

Bridging Video-text Retrieval with Multiple Choice Questions, CVPR 2022 (Oral) Paper | Project Page | Pre-trained Model | CLIP-Initialized Pre-trained

Applied Research Center (ARC), Tencent PCG 99 Jan 06, 2023
A webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV.

Qbr Qbr, pronounced as Cuber, is a webcam-based 3x3x3 rubik's cube solver written in Python 3 and OpenCV. 🌈 Accurate color detection 🔍 Accurate 3x3x

Kim 金可明 502 Dec 29, 2022
Go package for OCR (Optical Character Recognition), by using Tesseract C++ library

gosseract OCR Golang OCR package, by using Tesseract C++ library. OCR Server Do you just want OCR server, or see the working example of this package?

Hiromu OCHIAI 1.9k Dec 28, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
Ddddocr - 通用验证码识别OCR pypi版

带带弟弟OCR通用验证码识别SDK免费开源版 今天ddddocr又更新啦! 当前版本为1.3.1 想必很多做验证码的新手,一定头疼碰到点选类型的图像,做样本费时

Sml2h3 4.4k Dec 31, 2022
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
PianoVisuals - Create background videos synced with piano music using opencv

Steps Record piano video Use Neural Network to do body segmentation (video matti

Solbiati Alessandro 4 Jan 24, 2022
This is a GUI for scrapping PDFs with the help of optical character recognition making easier than ever to scrape PDFs.

pdf-scraper-with-ocr With this tool I am aiming to facilitate the work of those who need to scrape PDFs either by hand or using tools that doesn't imp

Jacobo José Guijarro Villalba 75 Oct 21, 2022
The open source extract transaction infomation by using OCR.

Transaction OCR Mã nguồn trích xuất thông tin transaction từ file scaned pdf, ở đây tôi lựa chọn tài liệu sao kê công khai của Thuy Tien. Mã nguồn có

Nguyen Xuan Hung 18 Jun 02, 2022
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
Code for AAAI 2021 paper: Sequential End-to-end Network for Efficient Person Search

This repository hosts the source code of our paper: [AAAI 2021]Sequential End-to-end Network for Efficient Person Search. SeqNet achieves the state-of

Zj Li 218 Dec 31, 2022
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022