Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Related tags

Deep Learninggrokking
Overview

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Paper

Original paper can be found here

Datasets

I'm not super clear on how they defined their division. I am using integer division:

  • $$x\circ y = (x // y) mod p$$, for some prime $$p$$ and $$0\leq x,y \leq p$$
  • $$x\circ y = (x // y) mod p$$ if y is odd else (x - y) mod p, for some prime $$p$$ and $$0\leq x,y \leq p$$

Hyperparameters

The default hyperparameters are from the paper, but can be adjusted via the command line when running train.py

Running experiments

To run with default settings, simply run python train.py. The first time you train on any dataset you have to specify --force_data.

Arguments:

optimizer args

  • "--lr", type=float, default=1e-3
  • "--weight_decay", type=float, default=1
  • "--beta1", type=float, default=0.9
  • "--beta2", type=float, default=0.98

model args

  • "--num_heads", type=int, default=4
  • "--layers", type=int, default=2
  • "--width", type=int, default=128

data args

  • "--data_name", type=str, default="perm", choices=[
    • "perm_xy", # permutation composition x * y
    • "perm_xyx1", # permutation composition x * y * x^-1
    • "perm_xyx", # permutation composition x * y * x
    • "plus", # x + y
    • "minus", # x - y
    • "div", # x / y
    • "div_odd", # x / y if y is odd else x - y
    • "x2y2", # x^2 + y^2
    • "x2xyy2", # x^2 + y^2 + xy
    • "x2xyy2x", # x^2 + y^2 + xy + x
    • "x3xy", # x^3 + y
    • "x3xy2y" # x^3 + xy^2 + y ]
  • "--num_elements", type=int, default=5 (choose 5 for permutation data, 97 for arithmetic data)
  • "--data_dir", type=str, default="./data"
  • "--force_data", action="store_true", help="Whether to force dataset creation."

training args

  • "--batch_size", type=int, default=512
  • "--steps", type=int, default=10**5
  • "--train_ratio", type=float, default=0.5
  • "--seed", type=int, default=42
  • "--verbose", action="store_true"
  • "--log_freq", type=int, default=10
  • "--num_workers", type=int, default=4
Owner
Tom Lieberum
Master student in AI at the University of Amsterdam. Effective altruist, rationalist, and transhumanist. Got my B.Sc. in Physics from RWTH Aachen Uni
Tom Lieberum
LSTM-VAE Implementation and Relevant Evaluations

LSTM-VAE Implementation and Relevant Evaluations Before using any file in this repository, please create two directories under the root directory name

Lan Zhang 5 Oct 08, 2022
Animate molecular orbital transitions using Psi4 and Blender

Molecular Orbital Transitions (MOT) Animate molecular orbital transitions using Psi4 and Blender Author: Maximilian Paradiz Dominguez, University of A

3 Feb 01, 2022
SNIPS: Solving Noisy Inverse Problems Stochastically

SNIPS: Solving Noisy Inverse Problems Stochastically This repo contains the official implementation for the paper SNIPS: Solving Noisy Inverse Problem

Bahjat Kawar 35 Nov 09, 2022
Patch2Pix: Epipolar-Guided Pixel-Level Correspondences [CVPR2021]

Patch2Pix for Accurate Image Correspondence Estimation This repository contains the Pytorch implementation of our paper accepted at CVPR2021: Patch2Pi

Qunjie Zhou 199 Nov 29, 2022
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection"

CTDNet The PyTorch code for ACM MM2021 paper "Complementary Trilateral Decoder for Fast and Accurate Salient Object Detection" Requirements Python 3.6

CVTEAM 28 Oct 20, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
PEPit is a package enabling computer-assisted worst-case analyses of first-order optimization methods.

PEPit: Performance Estimation in Python This open source Python library provides a generic way to use PEP framework in Python. Performance estimation

Baptiste 53 Nov 16, 2022
RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds

RipsNet: a general architecture for fast and robust estimation of the persistent homology of point clouds This repository contains the code asscoiated

Felix Hensel 14 Dec 12, 2022
The official project of SimSwap (ACM MM 2020)

SimSwap: An Efficient Framework For High Fidelity Face Swapping Proceedings of the 28th ACM International Conference on Multimedia The official reposi

Six_God 2.6k Jan 08, 2023
High-quality implementations of standard and SOTA methods on a variety of tasks.

Uncertainty Baselines The goal of Uncertainty Baselines is to provide a template for researchers to build on. The baselines can be a starting point fo

Google 1.1k Dec 30, 2022
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Unofficial pytorch implementation for Self-critical Sequence Training for Image Captioning. and others.

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 906 Jan 03, 2023
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
Code for CVPR2021 "Visualizing Adapted Knowledge in Domain Transfer". Visualization for domain adaptation. #explainable-ai

Visualizing Adapted Knowledge in Domain Transfer @inproceedings{hou2021visualizing, title={Visualizing Adapted Knowledge in Domain Transfer}, auth

Yunzhong Hou 80 Dec 25, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022