Understand Text Summarization and create your own summarizer in python

Overview

Understand Text Summarization and create your own summarizer in python

We all interact with applications which uses text summarization. Many of those applications are for the platform which publishes articles on daily news, entertainment, sports. With our busy schedule, we prefer to read the summary of those article before we decide to jump in for reading entire article. Reading a summary help us to identify the interest area, gives a brief context of the story.

image

Summarization can be defined as a task of producing a concise and fluent summary while preserving key information and overall meaning.

Impact:

Summarization systems often have additional evidence they can utilize in order to specify the most important topics of document(s). For example, when summarizing blogs, there are discussions or comments coming after the blog post that are good sources of information to determine which parts of the blog are critical and interesting. In scientific paper summarization, there is a considerable amount of information such as cited papers and conference information which can be leveraged to identify important sentences in the original paper.

How text summarization works:

In general there are two types of summarization, abstractive and extractive summarization.

1.Abstractive Summarization:

Abstractive methods select words based on semantic understanding, even those words did not appear in the source documents. It aims at producing important material in a new way. They interpret and examine the text using advanced natural language techniques in order to generate a new shorter text that conveys the most critical information from the original text.

Input document → understand context → semantics → create own summary

2. Extractive Summarization:

Extractive methods attempt to summarize articles by selecting a subset of words that retain the most important points

Input document → sentences similarity → weight sentences → select sentences with higher rank.

Next, Below is our code flow to generate summarize text:-

Input article → split into sentences → remove stop words → build a similarity matrix → generate rank based on matrix → pick top N sentences for summary.

How to run:

1.Clone the repository with cmd: git clone https://github.com/Vicky1-bot/Text-summarizer-using-NLP.git

2.Setup the virtual environment and activate it.

3.Install the requirements using cmd: pip install -r requirements.txt

4.Run the application using cmd: python text-summarizer.py

well finished,you can see result in the terminal.

Let’s look at it in action.

The complete text from an article titled Microsoft Launches Intelligent Cloud Hub To Upskill Students In AI & Cloud Technologies(msft.txt)

  • suppose the input file is msft.txt
  • And the summarized text with 2 lines as an input is

Envisioned as a three-year collaborative program, Intelligent Cloud Hub will support around 100 institutions with AI infrastructure, course content and curriculum, developer support, development tools and give students access to cloud and AI services. The company will provide AI development tools and Azure AI services such as Microsoft Cognitive Services, Bot Services and Azure Machine Learning. According to Manish Prakash, Country General Manager-PS, Health and Education, Microsoft India, said, "With AI being the defining technology of our time, it is transforming lives and industry and the jobs of tomorrow will require a different skillset.

Conclusion:

As you can see, it does a pretty good job. You can further customized it to reduce to number to character instead of lines.

It is important to understand that we have used textrank as an approach to rank the sentences. TextRank does not rely on any previous training data and can work with any arbitrary piece of text. TextRank is a general purpose graph-based ranking algorithm for NLP.

Owner
Sreekanth M
Python developer on AI&ML
Sreekanth M
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
Text Classification in Turkish Texts with Bert

You can watch the details of the project on my youtube channel Project Interface Project Second Interface Goal= Correctly guessing the classification

42 Dec 31, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Facebook Research 6.4k Dec 27, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

Udit Arora 19 Oct 28, 2022
💬 Open source machine learning framework to automate text- and voice-based conversations: NLU, dialogue management, connect to Slack, Facebook, and more - Create chatbots and voice assistants

Rasa Open Source Rasa is an open source machine learning framework to automate text-and voice-based conversations. With Rasa, you can build contextual

Rasa 15.3k Jan 03, 2023
☀️ Measuring the accuracy of BBC weather forecasts in Honolulu, USA

Accuracy of BBC Weather forecasts for Honolulu This repository records the forecasts made by BBC Weather for the city of Honolulu, USA. Essentially, t

Max Halford 12 Oct 15, 2022
Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

Web Scraping, Document Deduplication & GPT-2 Fine-tuning with a newly created scam dataset.

18 Nov 28, 2022
使用pytorch+transformers复现了SimCSE论文中的有监督训练和无监督训练方法

SimCSE复现 项目描述 SimCSE是一种简单但是很巧妙的NLP对比学习方法,创新性地引入Dropout的方式,对样本添加噪声,从而达到对正样本增强的目的。 该框架的训练目的为:对于batch中的每个样本,拉近其与正样本之间的距离,拉远其与负样本之间的距离,使得模型能够在大规模无监督语料(也可以

58 Dec 20, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Long text token classification using LongFormer

Long text token classification using LongFormer

abhishek thakur 161 Aug 07, 2022
Top2Vec is an algorithm for topic modeling and semantic search.

Top2Vec is an algorithm for topic modeling and semantic search. It automatically detects topics present in text and generates jointly embedded topic, document and word vectors.

Dimo Angelov 2.4k Jan 06, 2023
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
MiCECo - Misskey Custom Emoji Counter

MiCECo Misskey Custom Emoji Counter Introduction This little script counts custo

7 Dec 25, 2022
TPlinker for NER 中文/英文命名实体识别

本项目是参考 TPLinker 中HandshakingTagging思想,将TPLinker由原来的关系抽取(RE)模型修改为命名实体识别(NER)模型。

GodK 113 Dec 28, 2022
Transformers implementation for Fall 2021 Clinic

Installation Download miniconda3 if not already installed You can check by running typing conda in command prompt. Use conda to create an environment

Aakash Tripathi 1 Oct 28, 2021
PyTorch Language Model for 1-Billion Word (LM1B / GBW) Dataset

PyTorch Large-Scale Language Model A Large-Scale PyTorch Language Model trained on the 1-Billion Word (LM1B) / (GBW) dataset Latest Results 39.98 Perp

Ryan Spring 114 Nov 04, 2022
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
keras implement of transformers for humans

keras implement of transformers for humans

苏剑林(Jianlin Su) 4.8k Jan 03, 2023
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

The Easy-to-use Dialogue Response Selection Toolkit for Researchers

GMFTBY 32 Nov 13, 2022