PhoNLP: A BERT-based multi-task learning toolkit for part-of-speech tagging, named entity recognition and dependency parsing

Overview

logo

PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing

PhoNLP is a multi-task learning model for joint part-of-speech (POS) tagging, named entity recognition (NER) and dependency parsing. Experiments on Vietnamese benchmark datasets show that PhoNLP produces state-of-the-art results, outperforming a single-task learning approach that fine-tunes the pre-trained Vietnamese language model PhoBERT for each task independently.

logo

Details of the PhoNLP model architecture and experimental results can be found in our following paper:

@article{PhoNLP,
title     = {{PhoNLP: A joint multi-task learning model for Vietnamese part-of-speech tagging, named entity recognition and dependency parsing}},
author    = {Linh The Nguyen and Dat Quoc Nguyen},
journal   = {arXiv preprint},
volume    = {arXiv:2101.01476},
year      = {2021}
}

Please CITE our paper when PhoNLP is used to help produce published results or incorporated into other software.

Although we specify PhoNLP for Vietnamese, usage examples below in fact can directly work for other languages that have gold annotated corpora available for the three tasks of POS tagging, NER and dependency parsing, and a pre-trained BERT-based language model available from transformers.

Installation

  • Python version >= 3.6; PyTorch version >= 1.4.0
  • PhoNLP can be installed using pip as follows: pip3 install phonlp
  • Or PhoNLP can also be installed from source with the following commands:
     git clone https://github.com/VinAIResearch/PhoNLP
     cd PhoNLP
     pip3 install -e .
    

Usage example: Command lines

To play with the examples using command lines, please install phonlp from the source:

git clone https://github.com/VinAIResearch/PhoNLP
cd PhoNLP
pip3 install -e . 

Training

cd phonlp/models
python3 run_phonlp.py --mode train --save_dir  \
	--pretrained_lm  \
	--lr  --batch_size  --num_epoch  \
	--lambda_pos  --lambda_ner  --lambda_dep  \
	--train_file_pos  --eval_file_pos  \
	--train_file_ner  --eval_file_ner  \
	--train_file_dep  --eval_file_dep 

--lambda_pos, --lambda_ner and --lambda_dep represent mixture weights associated with POS tagging, NER and dependency parsing losses, respectively, and lambda_pos + lambda_ner + lambda_dep = 1.

Example:

cd phonlp/models
python3 run_phonlp.py --mode train --save_dir ./phonlp_tmp \
	--pretrained_lm "vinai/phobert-base" \
	--lr 1e-5 --batch_size 32 --num_epoch 40 \
	--lambda_pos 0.4 --lambda_ner 0.2 --lambda_dep 0.4 \
	--train_file_pos ../sample_data/pos_train.txt --eval_file_pos ../sample_data/pos_valid.txt \
	--train_file_ner ../sample_data/ner_train.txt --eval_file_ner ../sample_data/ner_valid.txt \
	--train_file_dep ../sample_data/dep_train.conll --eval_file_dep ../sample_data/dep_valid.conll

Evaluation

cd phonlp/models
python3 run_phonlp.py --mode eval --save_dir  \
	--batch_size  \
	--eval_file_pos  \
	--eval_file_ner  \
	--eval_file_dep  

Example:

cd phonlp/models
python3 run_phonlp.py --mode eval --save_dir ./phonlp_tmp \
	--batch_size 8 \
	--eval_file_pos ../sample_data/pos_test.txt \
	--eval_file_ner ../sample_data/ner_test.txt \
	--eval_file_dep ../sample_data/dep_test.conll 

Annotate a corpus

cd phonlp/models
python3 run_phonlp.py --mode annotate --save_dir  \
	--batch_size  \
	--input_file  \
	--output_file  

Example:

cd phonlp/models
python3 run_phonlp.py --mode annotate --save_dir ./phonlp_tmp \
	--batch_size 8 \
	--input_file ../sample_data/input.txt \
	--output_file ../sample_data/output.txt 

The pre-trained PhoNLP model for Vietnamese is available at HERE!

Usage example: Python API

import phonlp
# Automatically download the pre-trained PhoNLP model 
# and save it in a local machine folder
phonlp.download(save_dir='./pretrained_phonlp')
# Load the pre-trained PhoNLP model
model = phonlp.load(save_dir='./pretrained_phonlp')
# Annotate a corpus where each line represents a word-segmented sentence
model.annotate(input_file='input.txt', output_file='output.txt')
# Annotate a word-segmented sentence
model.print_out(model.annotate(text="Tôi đang làm_việc tại VinAI ."))

By default, the output for each input sentence is formatted with 6 columns representing word index, word form, POS tag, NER label, head index of the current word and its dependency relation type:

1	Tôi	P	O	3	sub	
2	đang	R	O	3	adv
3	làm_việc	V	O	0	root
4	tại	E	O	3	loc
5	VinAI	Np 	B-ORG	4	prob
6	.	CH	O	3	punct

In addition, the output can be formatted following the 10-column CoNLL format where the last column is used to represent NER predictions. This can be done by adding output_type='conll' into the model.annotate() function. Also, in the model.annotate() function, the value of the parameter batch_size can be adjusted to fit your computer's memory instead of using the default one at 1 (batch_size=1). Here, a larger batch_size would lead to a faster performance speed.

Owner
VinAI Research
VinAI Research
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

private-transformers This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers. What is this? Why

Xuechen Li 73 Dec 28, 2022
Simple Speech to Text, Text to Speech

Simple Speech to Text, Text to Speech 1. Download Repository Opsi 1 Download repository ini, extract di lokasi yang diinginkan Opsi 2 Jika sudah famil

Habib Abdurrasyid 5 Dec 28, 2021
[WWW 2021 GLB] New Benchmarks for Learning on Non-Homophilous Graphs

New Benchmarks for Learning on Non-Homophilous Graphs Here are the codes and datasets accompanying the paper: New Benchmarks for Learning on Non-Homop

94 Dec 21, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
The aim of this task is to predict someone's English proficiency based on a text input.

English_proficiency_prediction_NLP The aim of this task is to predict someone's English proficiency based on a text input. Using the The NICT JLE Corp

1 Dec 13, 2021
FewCLUE: 为中文NLP定制的小样本学习测评基准

FewCLUE: 为中文NLP定制的小样本学习测评基准

CLUE benchmark 387 Jan 04, 2023
Topic Inference with Zeroshot models

zeroshot_topics Table of Contents Installation Usage License Installation zeroshot_topics is distributed on PyPI as a universal wheel and is available

Rita Anjana 55 Nov 28, 2022
Sentello is python script that simulates the anti-evasion and anti-analysis techniques used by malware.

sentello Sentello is a python script that simulates the anti-evasion and anti-analysis techniques used by malware. For techniques that are difficult t

Malwation 62 Oct 02, 2022
A Python script which randomly chooses and prints a file from a directory.

___ ____ ____ _ __ ___ / _ \ | _ \ | _ \ ___ _ __ | '__| / _ \ | |_| || | | || | | | / _ \| '__| | | | __/ | _ || |_| || |_| || __

yesmaybenookay 0 Aug 06, 2021
a test times augmentation toolkit based on paddle2.0.

Patta Image Test Time Augmentation with Paddle2.0! Input | # input batch of images / / /|\ \ \ # apply

AgentMaker 110 Dec 03, 2022
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Fast, general, and tested differentiable structured prediction in PyTorch

Torch-Struct: Structured Prediction Library A library of tested, GPU implementations of core structured prediction algorithms for deep learning applic

HNLP 1.1k Dec 16, 2022
An example project using OpenPrompt under pytorch-lightning for prompt-based SST2 sentiment analysis model

pl_prompt_sst An example project using OpenPrompt under the framework of pytorch-lightning for a training prompt-based text classification model on SS

Zhiling Zhang 5 Oct 21, 2022
Partially offline multi-language translator built upon Huggingface transformers.

Translate Command-line interface to translation pipelines, powered by Huggingface transformers. This tool can download translation models, and then us

Richard Jarry 8 Oct 25, 2022
Text Normalization(文本正则化)

Text Normalization(文本正则化) 任务描述:通过机器学习算法将英文文本的“手写”形式转换成“口语“形式,例如“6ft”转换成“six feet”等 实验结果 XGBoost + bag-of-words: 0.99159 XGBoost+Weights+rules:0.99002

Jason_Zhang 0 Feb 26, 2022
ETM - R package for Topic Modelling in Embedding Spaces

ETM - R package for Topic Modelling in Embedding Spaces This repository contains an R package called topicmodels.etm which is an implementation of ETM

bnosac 37 Nov 06, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022