Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation, CVPR 2020 (Oral)

Related tags

Computer VisionSEAM
Overview

SEAM

The implementation of Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentaion.

You can also download the repository from https://gitee.com/hibercraft/SEAM

Abstract

Image-level weakly supervised semantic segmentation is a challenging problem that has been deeply studied in recentyears. Most of advanced solutions exploit class activation map (CAM). However, CAMs can hardly serve as the object mask due to the gap between full and weak supervisions. In this paper, we propose a self-supervised equivariant attention mechanism (SEAM) to discover additional supervision and narrow the gap. Our method is based on the observation that equivariance is an implicit constraint in fully supervised semantic segmentation, whose pixel-level labels take the same spatial transformation as the input images during data augmentation. However, this constraint is lost on the CAMs trained by image-level supervision. Therefore, we propose consistency regularization on predicted CAMs from various transformed images to provide self-supervision for network learning. Moreover, we propose a pixel correlation module (PCM), which exploits context appearance information and refines the prediction of current pixel by its similar neighbors, leading to further improvement on CAMs consistency. Extensive experiments on PASCAL VOC 2012 dataset demonstrate our method outperforms state-of-the-art methods using the same level of supervision.

Thanks to the work of jiwoon-ahn, the code of this repository borrow heavly from his AffinityNet repository, and we follw the same pipeline to verify the effectiveness of our SEAM.

Requirements

  • Python 3.6
  • pytorch 0.4.1, torchvision 0.2.1
  • CUDA 9.0
  • 4 x GPUs (12GB)

Usage

Installation

  • Download the repository.
git clone https://github.com/YudeWang/SEAM.git
  • Install python dependencies.
pip install -r requirements.txt
ln -s $your_dataset_path/VOCdevkit/VOC2012 VOC2012
  • (Optional) The image-level labels have already been given in voc12/cls_label.npy. If you want to regenerate it (which is unnecessary), please download the annotation of VOC 2012 SegmentationClassAug training set (containing 10582 images), which can be download here and place them all as VOC2012/SegmentationClassAug/xxxxxx.png. Then run the code
cd voc12
python make_cls_labels.py --voc12_root VOC2012

SEAM step

  1. SEAM training
python train_SEAM.py --voc12_root VOC2012 --weights $pretrained_model --session_name $your_session_name
  1. SEAM inference.
python infer_SEAM.py --weights $SEAM_weights --infer_list [voc12/val.txt | voc12/train.txt | voc12/train_aug.txt] --out_cam $your_cam_dir --out_crf $your_crf_dir
  1. SEAM step evaluation. We provide python mIoU evaluation script evaluation.py, or you can use official development kit. Here we suggest to show the curve of mIoU with different background score.
python evaluation.py --list VOC2012/ImageSets/Segmentation/[val.txt | train.txt] --predict_dir $your_cam_dir --gt_dir VOC2012/SegmentationClass --comment $your_comments --type npy --curve True

Random walk step

The random walk step keep the same with AffinityNet repository.

  1. Train AffinityNet.
python train_aff.py --weights $pretrained_model --voc12_root VOC2012 --la_crf_dir $your_crf_dir_4.0 --ha_crf_dir $your_crf_dir_24.0 --session_name $your_session_name
  1. Random walk propagation
python infer_aff.py --weights $aff_weights --infer_list [voc12/val.txt | voc12/train.txt] --cam_dir $your_cam_dir --voc12_root VOC2012 --out_rw $your_rw_dir
  1. Random walk step evaluation
python evaluation.py --list VOC2012/ImageSets/Segmentation/[val.txt | train.txt] --predict_dir $your_rw_dir --gt_dir VOC2012/SegmentationClass --comment $your_comments --type png

Pseudo labels retrain

Pseudo label retrain on DeepLabv1. Code is available here.

Citation

Please cite our paper if the code is helpful to your research.

@InProceedings{Wang_2020_CVPR_SEAM,
    author = {Yude Wang and Jie Zhang and Meina Kan and Shiguang Shan and Xilin Chen},
    title = {Self-supervised Equivariant Attention Mechanism for Weakly Supervised Semantic Segmentation},
    booktitle = {Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2020}
}

Reference

[1] J. Ahn and S. Kwak. Learning pixel-level semantic affinity with image-level supervision for weakly supervised semantic segmentation. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

Owner
Hibercraft
CS PhD, CV & DL
Hibercraft
question‘s area recognition using image processing and regular expression

======================================== Paper-Question-recognition ======================================== question‘s area recognition using image p

Yuta Mizuki 7 Dec 27, 2021
Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Handwritten Text Recognition with TensorFlow Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows Up

Harald Scheidl 1.5k Jan 07, 2023
Natural language detection

Detect the language of text. What’s so cool about franc? franc can support more languages(†) than any other library franc is packaged with support for

Titus 3.8k Jan 02, 2023
An Implementation of the seglink alogrithm in paper Detecting Oriented Text in Natural Images by Linking Segments

Tips: A more recent scene text detection algorithm: PixelLink, has been implemented here: https://github.com/ZJULearning/pixel_link Contents: Introduc

dengdan 484 Dec 07, 2022
Create single line SVG illustrations from your pictures

Create single line SVG illustrations from your pictures

Javier Bórquez 686 Dec 26, 2022
Memory tests solver with using OpenCV

Human Benchmark project This project is OpenCV based programs which are puzzle solvers for 7 different games for https://humanbenchmark.com/. made as

Bahadır Araz 24 Dec 27, 2022
Python Computer Vision application that allows users to draw/erase on the screen using their webcam.

CV-Virtual-WhiteBoard The Virtual WhiteBoard is a project I made using the OpenCV and Mediapipe Python libraries. Using your index and middle finger y

Stephen Wang 1 Jan 07, 2022
かの有名なあの東方二次創作ソング、「bad apple!」のMVをPythonでやってみたって話

bad apple!! 内容 このプログラムは、bad apple!(feat. nomico)のPVをPythonを用いて再現しよう!という内容です。 実はYoutube並びにGithub上に似たようなプログラムがあったしなんならそっちの方が結構良かったりするんですが、一応公開しますw 使い方 こ

赤紫 8 Jan 05, 2023
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
Dirty, ugly, and hopefully useful OCR of Facebook Papers docs released by Gizmodo

Quick and Dirty OCR of Facebook Papers Gizmodo has been working through the Facebook Papers and releasing the docs that they process and review. As lu

Bill Fitzgerald 2 Oct 28, 2021
Repositório para registro de estudo da biblioteca opencv (Python)

OpenCV (Python) Objetivo do Repositório: Registrar avanços no estudo da biblioteca opencv. O repositório estará aberto a qualquer pessoa e há tambem u

1 Jun 14, 2022
Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

Jin-Fan Hu (胡锦帆) 11 Dec 12, 2022
Document manipulation detection with python

image manipulation detection task: -- tianchi function image segmentation salie

JiaKui Hu 3 Aug 22, 2022
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
A general list of resources to image text localization and recognition 场景文本位置感知与识别的论文资源与实现合集 シーンテキストの位置認識と識別のための論文リソースの要約

Scene Text Localization & Recognition Resources Read this institute-wise: English, 简体中文. Read this year-wise: English, 简体中文. Tags: [STL] (Scene Text L

Karl Lok (Zhaokai Luo) 901 Dec 11, 2022
Morphological edge detection or object's boundary detection using erosion and dialation in OpenCV python

Morphologycal-edge-detection-using-erosion-and-dialation the task is to detect object boundary using erosion or dialation . Here, use the kernel or st

Tamzid hasan 3 Nov 25, 2022
Controlling Volume by Hand Gestures

This program allows the user to control the volume of their device with specific hand gestures involving their thumb and index finger!

Riddhi Bajaj 1 Nov 11, 2021
Convolutional Recurrent Neural Network (CRNN) for image-based sequence recognition.

Convolutional Recurrent Neural Network This software implements the Convolutional Recurrent Neural Network (CRNN), a combination of CNN, RNN and CTC l

Baoguang Shi 2k Dec 31, 2022
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022