A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Overview

Persian-Image-Captioning

Hugging Face Spaces

We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implementation of our model is in PyTorch with transformers library by Hugging Face( 🤗 ).

You can choose any pretrained vision model and any language model to use in the Vision Encoder Decoder model. Here we use ViT as the encoder, and ParsBERT (v2.0) as the decoder. The encoder and decoder are loaded separately via from_pretrained()function. Cross-attention layers are randomly initialized and added to the decoder.

You may refer to the Vision Encoder Decoder Model for more information.

How to use

You can generate caption of an image using this model using the code below:

import torch
import urllib
import PIL
import matplotlib.pyplot as plt
from transformers import ViTFeatureExtractor, AutoTokenizer, \
                         VisionEncoderDecoderModel

def show_img(image):
    # show image
    plt.axis("off")
    plt.imshow(image)
    
if torch.cuda.is_available():
    device = 'cuda'
else:
    device = 'cpu'


#pass the url of any image to generate a caption for it    
urllib.request.urlretrieve("https://images.unsplash.com/photo-1628191011227-522c7c3f0af9?ixlib=rb-1.2.1&ixid=MnwxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8&auto=format&fit=crop&w=870&q=80", "sample.png")
image = PIL.Image.open("sample.png")


#Load the model you trained for inference 
model_checkpoint = 'MahsaShahidi/Persian-Image-Captioning'
model = VisionEncoderDecoderModel.from_pretrained(model_checkpoint).to(device)

feature_extractor = ViTFeatureExtractor.from_pretrained('google/vit-base-patch16-224-in21k')
tokenizer = AutoTokenizer.from_pretrained('HooshvareLab/bert-fa-base-uncased-clf-persiannews')

sample = feature_extractor(image, return_tensors="pt").pixel_values.to(device)
caption_ids = model.generate(sample, max_length = 30)[0]
caption_text = tokenizer.decode(caption_ids, skip_special_tokens=True)
print(caption_text)
show_img(image)

Inference

Following are the reslts of 3 captions generated on free stock photos after 2 epochs of training.

Image Caption
Generated Caption: زنی در آشپزخانه در حال اماده کردن غذا است.
Generated Caption: گروهی از مردم در حال پرواز بادبادک در یک زمین چمنزار.
Generated Caption: مردی در ماشین نشسته و به ماشین نگاه می کند.

Credits

A huge thanks to Kaggle for providing free access to GPU, and to the creators of Huggingface, ViT, and ParsBERT!

References

An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

Owner
Hamtech-ai
Hamtech-ai
Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings

Cải thiện Elasticsearch trong bài toán semantic search sử dụng phương pháp Sentence Embeddings Trong bài viết này mình sẽ sử dụng pretrain model SimCS

Vo Van Phuc 18 Nov 25, 2022
Refactored version of FastSpeech2

Refactored version of FastSpeech2. An implementation of Microsoft's "FastSpeech 2: Fast and High-Quality End-to-End Text to Speech"

ILJI CHOI 10 May 26, 2022
Source code of paper "BP-Transformer: Modelling Long-Range Context via Binary Partitioning"

BP-Transformer This repo contains the code for our paper BP-Transformer: Modeling Long-Range Context via Binary Partition Zihao Ye, Qipeng Guo, Quan G

Zihao Ye 119 Nov 14, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 89 Dec 18, 2022
A combination of autoregressors and autoencoders using XLNet for sentiment analysis

A combination of autoregressors and autoencoders using XLNet for sentiment analysis Abstract In this paper sentiment analysis has been performed in or

James Zaridis 2 Nov 20, 2021
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Translate - a PyTorch Language Library

NOTE PyTorch Translate is now deprecated, please use fairseq instead. Translate - a PyTorch Language Library Translate is a library for machine transl

775 Dec 24, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
A Semi-Intelligent ChatBot filled with statistical and economical data for the Premier League.

MONEYBALL - ChatBot Module: 4006CEM, Class: B, Group: 5 Contributors: Jonas Djondo Roshan Kc Cole Samson Daniel Rodrigues Ihteshaam Naseer Kind remind

Jonas Djondo 1 Nov 18, 2021
Korea Spell Checker

한국어 문서 koSpellPy Korean Spell checker How to use Install pip install kospellpy Use from kospellpy import spell_init spell_checker = spell_init() # d

kangsukmin 2 Oct 20, 2021
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
gaiic2021-track3-小布助手对话短文本语义匹配复赛rank3、决赛rank4

决赛答辩已经过去一段时间了,我们队伍ac milan最终获得了复赛第3,决赛第4的成绩。在此首先感谢一些队友的carry~ 经过2个多月的比赛,学习收获了很多,也认识了很多大佬,在这里记录一下自己的参赛体验和学习收获。

102 Dec 19, 2022
NLP tool to extract emotional phrase from tweets 🤩

Emotional phrase extractor Extract phrase in the given text that is used to express the sentiment. Capturing sentiment in language is important in the

Shahul ES 38 Oct 17, 2022
Shared code for training sentence embeddings with Flax / JAX

flax-sentence-embeddings This repository will be used to share code for the Flax / JAX community event to train sentence embeddings on 1B+ training pa

Nils Reimers 23 Dec 30, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
Code for hyperboloid embeddings for knowledge graph entities

Implementation for the papers: Self-Supervised Hyperboloid Representations from Logical Queries over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao,

30 Dec 10, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
Implementation for paper BLEU: a Method for Automatic Evaluation of Machine Translation

BLEU Score Implementation for paper: BLEU: a Method for Automatic Evaluation of Machine Translation Author: Ba Ngoc from ProtonX BLEU score is a popul

Ngoc Nguyen Ba 6 Oct 07, 2021