Characterizing possible failure modes in physics-informed neural networks.

Overview

Characterizing possible failure modes in physics-informed neural networks

This repository contains the PyTorch source code for the experiments in the manuscript:

Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney. Characterizing possible failure modes in physics-informed neural networks., Neural Information Processing Systems (NeurIPS) 2021.

Introduction

Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs. In particular, we analyze several distinct situations of widespread physical interest, including learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which involves differential operators, can introduce a number of subtle problems, including making the problem ill-conditioned. Importantly, we show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the PINN's loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.

Installation

Installation of all necessary packages can either be done via poetry or through requirements.txt. For example:

git clone [email protected]:a1k12/characterizing-pinns-failure-modes.git
cd characterizing-pinns-failure-modes
pip install .

Instructions

To run the code for the convection, diffusion, reaction, or reaction-diffusion ('rd') systems with periodic boundary conditions, the following can be run within the 'pbc_examples' folder.

python main_pbc.py [--system] [--seed] [--N_f] [--optimizer_name] [--lr] [--L] [--xgrid] [--nu] [--rho] [--beta] [--u0_str] [--layers] [--net] [--activation] [--loss_style] [--visualize] [--save_model]

Possible arguments:
--system            system of study (default: convection; also supports diffusion, reaction, rd)
--seed              used to reproduce the results (default: 0)
--N_f               number of points to sample from the interior domain (default: 1000)
--optimizer_name    optimizer to use, currently supports L-BFGS
--lr                learning rate (default: 1.0)
--L                 multiplier on the regularization parameter (default: 1.0)
--xgrid             size of the xgrid (default: 256)
--nu                viscosity coefficient for diffusion
--rho               reaction coefficient
--beta              speed of propagation for convection
--u0_str            initial condition (default: 'sin(x)'; also supports 'gauss' for reaction/reaction-diffusion)
--layers            number of layers in the network (default: '50,50,50,50,1')
--net               net architecture (default: 'DNN')
--activation        activation for the network (default: 'tanh')
--loss_style        loss function style (default: 'mse')
--visualize         option to visualize the solution (default: False)
--save_model        option to save the model (default: False)

Citation

This repository has been developed as part of the following paper. We would appreciate it if you would please cite the following paper if you found the library useful for your work:

@article{krishnapriyan2021characterizing,
  title={Characterizing possible failure modes in physics-informed neural networks},
  author={Krishnapriyan, Aditi S. and Gholami, Amir and Zhe, Shandian and Kirby, Robert and Mahoney, Michael W},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  year={2021}
}
Owner
Aditi Krishnapriyan
Aditi Krishnapriyan
This project modify tensorflow object detection api code to predict oriented bounding boxes. It can be used for scene text detection.

This is an oriented object detector based on tensorflow object detection API. Most of the code is not changed except for those related to the need of

Dafang He 30 Oct 22, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
ocroseg - This is a deep learning model for page layout analysis / segmentation.

ocroseg This is a deep learning model for page layout analysis / segmentation. There are many different ways in which you can train and run it, but by

NVIDIA Research Projects 71 Dec 06, 2022
Introduction to image processing, most used and popular functions of OpenCV

👀 OpenCV 101 Introduction to image processing, most used and popular functions of OpenCV go here.

Vusal Ismayilov 3 Jul 02, 2022
Give a solution to recognize MaoYan font.

猫眼字体识别 该 github repo 在于帮助xjtlu的同学们识别猫眼的扭曲字体。已经打包上传至 pypi ,可以使用 pip 直接安装。 猫眼字体的识别不出来的原理与解决思路在采茶上 使用方法: import MaoYanFontRecognize

Aruix 4 Jun 30, 2022
Hand gesture detection project with aweome UI implementation.

an awesome hand gesture detection project for you to be creative! Imagination is the limit to do with this project.

AR Ashraf 39 Sep 26, 2022
Sort By Face

Sort-By-Face This is an application with which you can either sort all the pictures by faces from a corpus of photos or retrieve all your photos from

0 Nov 29, 2021
BD-ALL-DIGIT - This Is Bangladeshi All Sim Cloner Tools

BANGLADESHI ALL SIM CLONER TOOLS INSTALL TOOL ON TERMUX $ apt update $ apt upgra

MAHADI HASAN AFRIDI 2 Jan 19, 2022
Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera.

Developed an AI-based system to control the mouse cursor using Python and OpenCV with the real-time camera. Fingertip location is mapped to RGB images to control the mouse cursor.

Ravi Sharma 71 Dec 20, 2022
Simple app for visual editing of Page XML files

Name nw-page-editor - Simple app for visual editing of Page XML files. Version: 2021.02.22 Description nw-page-editor is an application for viewing/ed

Mauricio Villegas 27 Jun 20, 2022
This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral) This repository contains the official PyTorch implementation

Shunsuke Saito 235 Dec 18, 2022
This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

This project proposes a camera vision based cursor control system, using hand moment captured from a webcam through a landmarks of hand by using Mideapipe module

Chandru 2 Feb 20, 2022
WACV 2022 Paper - Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching

Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Code based on our WACV 2022 Accepted Paper: https://arxiv.org/pdf/

Andres 13 Dec 17, 2022
A simple document layout analysis using Python-OpenCV

Run the application: python main.py *Note: For first time running the application, create a folder named "output". The application is a simple documen

Roinand Aguila 109 Dec 12, 2022
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
Awesome Spectral Indices in Python.

Awesome Spectral Indices in Python: Numpy | Pandas | GeoPandas | Xarray | Earth Engine | Planetary Computer | Dask GitHub: https://github.com/davemlz/

David Montero Loaiza 98 Jan 02, 2023
TedEval: A Fair Evaluation Metric for Scene Text Detectors

TedEval: A Fair Evaluation Metric for Scene Text Detectors Official Python 3 implementation of TedEval | paper | slides Chae Young Lee, Youngmin Baek,

Clova AI Research 167 Nov 20, 2022
A simple component to display annotated text in Streamlit apps.

Annotated Text Component for Streamlit A simple component to display annotated text in Streamlit apps. For example: Installation First install Streaml

Thiago Teixeira 312 Dec 30, 2022
A fastai/PyTorch package for unpaired image-to-image translation.

Unpaired image-to-image translation A fastai/PyTorch package for unpaired image-to-image translation currently with CycleGAN implementation. This is a

Tanishq Abraham 120 Dec 02, 2022