Abstractive opinion summarization system (SelSum) and the largest dataset of Amazon product summaries (AmaSum). EMNLP 2021 conference paper.

Overview

Learning Opinion Summarizers by Selecting Informative Reviews

This repository contains the codebase and the dataset for the corresponding EMNLP 2021 paper. Please star the repository and cite the paper if you find it useful.

SelSum is a probabilistic (latent) model that selects informative reviews from large collections and subsequently summarizes them as shown in the diagram below.

AmaSum is the largest abstractive opinion summarization dataset, consisting of more than 33,000 human-written summaries for Amazon products. Each summary is paired, on average, with more than 320 customer reviews. Summaries consist of verdicts, pros, and cons, see the example below.

Verdict: The Olympus Evolt E-500 is a compact, easy-to-use digital SLR camera with a broad feature set for its class and very nice photo quality overall.

Pros:

  • Compact design
  • Strong autofocus performance even in low-light situations
  • Intuitive and easy-to-navigate menu system
  • Wide range of automated and manual features to appeal to both serious hobbyists and curious SLR newcomers

Cons:

  • Unreliable automatic white balance in some conditions
  • Slow start-up time when dust reduction is enabled
  • Compatible Zuiko lenses don't indicate focal distance

1. Setting up

1.1. Environment

The easiest way to proceed is to create a separate conda environment with Python 3.7.0.

conda create -n selsum python=3.7.0

Further, install PyTorch as shown below.

conda install -c pytorch pytorch=1.7.0

In addition, install the essential python modules:

pip install -r requirements.txt

The codebase relies on FairSeq. To avoid version conflicts, please download our version and store it to ../fairseq_lib. Please follow the installation instructions in the unzipped directory.

1.2. Environmental variables

Before running scripts, please add the environmental variables below.

export PYTHONPATH=../fairseq_lib/.:$PYTHONPATH
export CUDA_VISIBLE_DEVICES=0,1,2,3
export MKL_THREADING_LAYER=GNU

1.3. Data

The dataset in various formats is available in the dataset folder. To run the model, please binarize the fairseq specific version.

1.4. Checkpoints

We also provide the checkpoints of the trained models. These should be allocated to artifacts/checkpoints.

2. Training

2.1. Posterior and Summarizer training

First, the posterior and summarizer need to be trained. The summarizer is initialized using the BART base model, please download the checkpoint and store it to artifacts/bart. Note: please adjust hyper-parameters and paths in the script if needed.

bash selsum/scripts/training/train_selsum.sh

Please note that REINFORCE-based loss for the posterior training can be negative as the forward pass does not correspond to the actual loss function. Instead, the loss is re-formulated to compute gradients in the backward pass (Eq. 5 in the paper).

2.2. Selecting reviews with the Posterior

Once the posterior is trained (jointly with the summarizer), informative reviews need to be selected. The script below produces binary tags indicating selected reviews.

python selsum/scripts/inference/posterior_select_revs.py --data-path=../data/form  \
--checkpoint-path=artifacts/checkpoints/selsum.pt \
--bart-dir=artifacts/bart \
--output-folder-path=artifacts/output/q_sel \
--split=test \
--ndocs=10 \
--batch-size=30

The output can be downloaded and stored to artifacts/output/q_sel.

2.3. Fitting the Prior

Once tags are produced by the posterior, we can fit the prior to approximate it.

bash selsum/scripts/training/train_prior.sh

2.4. Selecting Reviews with the Prior

After the prior is trained, we select informative reviews for downstream summarization.

python selsum/scripts/inference/prior_select_revs.py --data-path=../data/form \
--checkpoint-path=artifacts/checkpoints/prior.pt \
--bart-dir=artifacts/bart \
--output-folder-path=artifacts/output/p_sel \
--split=test \
--ndocs=10 \
--batch-size=10

The output can be downloaded and stored to artifacts/output/p_sel.

3. Inference

3.1. Summary generation

To generate summaries, run the command below:

python selsum/scripts/inference/gen_summs.py --data-path=artifacts/output/p_sel/ \
--bart-dir=artifacts/bart \
--checkpoint-path=artifacts/checkpoints/selsum.pt \
--output-folder-path=artifacts/output/p_summs \
--split=test \
--batch-size=20

The model outputs are also available at artifacts/summs.

3.2. Evaluation

For evaluation, we used a wrapper over ROUGE and the CoreNLP tokenizer.

The tokenizer requires the CoreNLP library to be downloaded. Please unzip it to the artifacts/misc folder. Further, make it visible in the classpath as shown below.

export CLASSPATH=artifacts/misc/stanford-corenlp-full-2016-10-31/stanford-corenlp-3.7.0.jar

After the installations, please adjust the paths and use the commands below.

GEN_FILE_PATH=artifacts/summs/test.verd
GOLD_FILE_PATH=../data/form/eval/test.verd

# tokenization
cat "${GEN_FILE_PATH}" | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > "${GEN_FILE_PATH}.tokenized"
cat "${GOLD_FILE_PATH}" | java edu.stanford.nlp.process.PTBTokenizer -ioFileList -preserveLines > "${GOLD_FILE_PATH}.tokenized"

# rouge evaluation
files2rouge "${GOLD_FILE_PATH}.tokenized" "${GEN_FILE_PATH}.tokenized"

Citation

@inproceedings{bražinskas2021learning,
      title={Learning Opinion Summarizers by Selecting Informative Reviews}, 
      author={Arthur Bražinskas and Mirella Lapata and Ivan Titov},
      booktitle={Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP)},
      year={2021},
}

License

Codebase: MIT

Dataset: non-commercial

Notes

  • Occasionally logging stops being printed while the model is training. In this case, the log can be displayed either with a gap or only at the end of the epoch.
  • SelSum is trained with a single data worker process because otherwise cross-parallel errors are encountered.
Owner
Arthur Bražinskas
PhD in NLP at the University of Edinburgh, UK. I work on abstractive opinion summarization.
Arthur Bražinskas
A annotation of yolov5-5.0

代码版本:0714 commit #4000 $ git clone https://github.com/ultralytics/yolov5 $ cd yolov5 $ git checkout 720aaa65c8873c0d87df09e3c1c14f3581d4ea61 这个代码只是注释版

Laughing 229 Dec 17, 2022
QMagFace: Simple and Accurate Quality-Aware Face Recognition

Quality-Aware Face Recognition 26.11.2021 start readme QMagFace: Simple and Accurate Quality-Aware Face Recognition Research Paper Implementation - To

Philipp Terhörst 59 Jan 04, 2023
Alex Pashevich 62 Dec 24, 2022
List of content farm sites like g.penzai.com.

内容农场网站清单 Google 中文搜索结果包含了相当一部分的内容农场式条目,比如「小 X 知识网」「小 X 百科网」。此种链接常会 302 重定向其主站,页面内容为自动生成,大量堆叠关键字,揉杂一些爬取到的内容,完全不具可读性和参考价值。 尤为过分的是,该类网站可能有成千上万个分身域名被 Goog

WDMPA 541 Jan 03, 2023
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
CowHerd is a partially-observed reinforcement learning environment

CowHerd is a partially-observed reinforcement learning environment, where the player walks around an area and is rewarded for milking cows. The cows try to escape and the player can place fences to h

Danijar Hafner 6 Mar 06, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Scikit-learn compatible estimation of general graphical models

skggm : Gaussian graphical models using the scikit-learn API In the last decade, learning networks that encode conditional independence relationships

213 Jan 02, 2023
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Jan 07, 2023
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
Pytorch Lightning code guideline for conferences

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Pytorch Lightning 1k Jan 02, 2023
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
Enigma-Plus - Python based Enigma machine simulator with some extra features

Enigma-Plus Python based Enigma machine simulator with some extra features Examp

1 Jan 05, 2022
Repository providing a wide range of self-supervised pretrained models for computer vision tasks.

Hierarchical Pretraining: Research Repository This is a research repository for reproducing the results from the project "Self-supervised pretraining

Colorado Reed 53 Nov 09, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
Code for Recurrent Mask Refinement for Few-Shot Medical Image Segmentation (ICCV 2021).

Recurrent Mask Refinement for Few-Shot Medical Image Segmentation Steps Install any missing packages using pip or conda Preprocess each dataset using

XIE LAB @ UCI 39 Dec 08, 2022