Package towards building Explainable Forecasting and Nowcasting Models with State-of-the-art Deep Neural Networks and Dynamic Factor Model on Time Series data sets with single line of code. Also, provides utilify facility for time-series signal similarities matching, and removing noise from timeseries signals.

Overview

DeepXF: Explainable Forecasting and Nowcasting with State-of-the-art Deep Neural Networks and Dynamic Factor Model

Also, verify TS signal similarities and Filtering of TS signals with single line of code at ease

deep-xf

pypi: https://pypi.org/project/deep_xf

images/logo.png

Related Blog: https://towardsdatascience.com/interpretable-nowcasting-with-deepxf-using-minimal-code-6b16a76ca52f

Related Blog: https://medium.com/analytics-vidhya/building-explainable-forecasting-models-with-state-of-the-art-deep-neural-networks-using-a-ad3fa5844fef

Related Blog: https://towardsdatascience.com/learning-similarities-between-biomedical-signals-with-deep-siamese-network-7684648e2ba0

Related Blog: https://ajay-arunachalam08.medium.com/denoising-ecg-signals-with-ensemble-of-filters-65919d15afe9

About deep-xf

DeepXF is an open source, low-code python library for forecasting and nowcasting tasks. DeepXF helps in designing complex forecasting and nowcasting models with built-in utility for time series data. One can automatically build interpretable deep forecasting and nowcasting models at ease with this simple, easy-to-use and low-code solution. It enables users to perform end-to-end Proof-Of-Concept (POC) quickly and efficiently. One can build models based on deep neural network such as Recurrent Neural Network (RNN), Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), Bidirectional RNN/LSTM/GRU (BiRNN/BiLSTM/BiGRU), Spiking Neural Network (SNN), Graph Neural Network (GNN), Transformers, Generative Adversarial Network (GAN), Convolutional Neural Network (CNN), and others. It also provides facility to build nowcast model using Dynamic Factor Model.

images/representation.png

DeepXF is conceived and developed by Ajay Arunachalam - https://www.linkedin.com/in/ajay-arunachalam-4744581a/

Please Note:- This is still by large a work in progress, so always open to your comments and things you feel to be included. Also, if you want to be a contributor, you are always most welcome. The RNN/LSTM/GRU/BiRNN/BiLSTM/BiGRU are already part of the initial version roll-out, while the latter ones (SNN, GNN, Transformers, GAN, CNN, etc.) are work in progress, and will be added soon once the testing is completed.

The library provides (not limited too):-

  • Exploratory Data Analysis with services like profiling, filtering outliers, univariate/multivariate plots, plotly interactive plots, rolling window plots, detecting peaks, etc.
  • Data Preprocessing for Time-series data with services like finding missing, imputing missing, date-time extraction, single timestamp generation, removing unwanted features, etc.
  • Descriptive statistics for the provided time-series data, Normality evaluation, etc.
  • Feature engineering with services like generating time lags, date-time features, one-hot encoding, date-time cyclic features, etc.
  • Finding similarity between homogeneous time-series inputs with Siamese Neural Networks.
  • Denoising time-series input signals.
  • Building Deep Forecasting Model with hyperparameters tuning and leveraging available computational resource (CPU/GPU).
  • Forecasting model performance evaluation with several key metrics
  • Game theory based method to interpret forecasting model results.
  • Building Nowcasting model with Expectation–maximization algorithm
  • Explainable Nowcasting

Who can use deep-xf?

DeepXF is an open-source library ideal for:-

  • Citizen Data Scientists who prefer a low code solution.
  • Experienced Data Scientists who want to increase model accuracy and improve productivity.
  • Data Science Professionals and Consultants involved in building proof-of-concept (poc) projects.
  • Researchers for quick poc prototyping and testing.
  • Students and Teachers.
  • ML Enthusiasts.
  • Learners.

Requirements

  • Python 3.6.x
  • torch[>=1.4.0]
  • NumPy[>=1.9.0]
  • SciPy[>=0.14.0]
  • Scikit-learn[>=0.16]
  • statsmodels[0.12.2]
  • Pandas[>=0.23.0]
  • Matplotlib
  • Seaborn[0.9.0]
  • tqdm
  • shap
  • keras[2.6.0]
  • pandas_profiling[3.1.0]
  • py-ecg-detectors

Quickly Setup package with automation scripts

sudo bash setup.sh

Installation

Using pip:

pip install deep-xf or pip3 install deep-xf or pip install git+git://github.com/ajayarunachalam/Deep_XF
$ git clone https://github.com/ajayarunachalam/Deep_XF
$ cd Deep_XF
$ python setup.py install

Using notebook:

!pip install deep-xf

Using conda:

$ conda install -c conda-forge deep-xf

Getting started

  • FORECASTING DEMO:
# set model config
select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='rnn', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=1)

# select hyperparameters
hidden_dim, layer_dim, batch_size, dropout, n_epochs, learning_rate, weight_decay = Forecast.hyperparameter_config(hidden_dim=64,                                                                                                                                                               layer_dim = 3, batch_size=64, dropout = 0.2,                                                                                                                                    n_epochs = 30, learning_rate = 1e-3, weight_decay = 1e-6)

# train model
opt, scaler = Forecast.train(df=df_full_features, target_col='value', split_ratio=0.2, select_model=select_model,              select_scaler=select_scaler, forecast_window=forecast_window, batch_size=batch_size, hidden_dim=hidden_dim, layer_dim=layer_dim,dropout=dropout, n_epochs=n_epochs, learning_rate=learning_rate, weight_decay=weight_decay)

# forecast for user selected period
forecasted_data, ff_full_features, ff_full_features_ = Forecast.forecast(model_df, ts, fc, opt, scaler, period=25, fq='1h', select_scaler=select_scaler,)

# interpret the forecasting result
Helper.explainable_forecast(df_full_features, ff_full_features_, fc, specific_prediction_sample_to_explain=df_full_features.shape[0]+2, input_label_index_value=0, num_labels=1)

Example Illustration

__author__ = 'Ajay Arunachalam'
__version__ = '0.0.1'
__date__ = '7.11.2021'


    from deep_xf.main import *
    from deep_xf.dpp import *
    from deep_xf.forecast_ml import *
    from deep_xf.forecast_ml_extension import *
    from deep_xf.stats import *
    from deep_xf.utility import *
    from deep_xf.denoise import *
    from deep_xf.similarity import *
    df = pd.read_csv('../data/PJME_hourly.csv')
    print(df.shape)
    print(df.columns)
    # set variables
    ts, fc = Forecast.set_variable(ts='Datetime', fc='PJME_MW')
    # get variables
    model_df, orig_df = Helper.get_variable(df, ts, fc)
    # EDA
    ExploratoryDataAnalysis.plot_dataset(df=model_df,fc=fc, title='PJM East (PJME) Region: estimated energy consumption in Megawatts (MW)')
    # Feature Engg
    df_full_features = Features.generate_date_time_features_hour(model_df, ['hour','month','day','day_of_week','week_of_year'])
    # generating cyclic features
    df_full_features = Features.generate_cyclic_features(df_full_features, 'hour', 24, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'day_of_week', 7, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'month', 12, 1)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'week_of_year', 52, 0)
    # holiday feature
    df_full_features = Features.generate_other_related_features(df=df_full_features)
    select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='rnn', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=1)

    hidden_dim, layer_dim, batch_size, dropout, n_epochs, learning_rate, weight_decay = Forecast.hyperparameter_config(hidden_dim=64,                                                                                                                                                               layer_dim = 3, batch_size=64, dropout = 0.2,                                                                                                                                    n_epochs = 30, learning_rate = 1e-3, weight_decay = 1e-6)

    opt, scaler = Forecast.train(df=df_full_features, target_col='value', split_ratio=0.2, select_model=select_model,              select_scaler=select_scaler, forecast_window=forecast_window, batch_size=batch_size, hidden_dim=hidden_dim, layer_dim=layer_dim,dropout=dropout, n_epochs=n_epochs, learning_rate=learning_rate, weight_decay=weight_decay)

    forecasted_data, ff_full_features, ff_full_features_ = Forecast.forecast(model_df, ts, fc, opt, scaler, period=25, fq='1h', select_scaler=select_scaler,)

    Helper.explainable_forecast(df_full_features, ff_full_features_, fc, specific_prediction_sample_to_explain=df.shape[0]+1, input_label_index_value=0, num_labels=1)
  • NOWCASTING DEMO:
# set model config
select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='em', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=5)

# nowcast for user selected window
nowcast_full_data, nowcast_pred_data = EMModel.nowcast(df_full_features, ts, fc, period=5, fq='1h', forecast_window=forecast_window,    select_model=select_model)

# interpret the nowcasting model result
EMModel.explainable_nowcast(df_full_features, nowcast_pred_data, fc, specific_prediction_sample_to_explain=df.shape[0]+2, input_label_index_value=0, num_labels=1)

Example Illustration

__author__ = 'Ajay Arunachalam'
__version__ = '0.0.1'
__date__ = '7.11.2021'

    from deep_xf.main import *
    from deep_xf.dpp import *
    from deep_xf.forecast_ml import *
    from deep_xf.forecast_ml_extension import *
    from deep_xf.stats import *
    from deep_xf.utility import *
    from deep_xf.denoise import *
    from deep_xf.similarity import *
    df = pd.read_csv('./data/PJME_hourly.csv')
    # set variables
    ts, fc = Forecast.set_variable(ts='Datetime', fc='PJME_MW')
    # get variables
    model_df, orig_df = Helper.get_variable(df, ts, fc)
    select_model, select_user_path, select_scaler, forecast_window = Forecast.set_model_config(select_model='em', select_user_path='./forecast_folder_path/', select_scaler='minmax', forecast_window=5)
    df_full_features = Features.generate_date_time_features_hour(model_df, ['hour','month','day','day_of_week','week_of_year'])
    # generating cyclic features
    df_full_features = Features.generate_cyclic_features(df_full_features, 'hour', 24, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'day_of_week', 7, 0)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'month', 12, 1)
    df_full_features = Features.generate_cyclic_features(df_full_features, 'week_of_year', 52, 0)
    df_full_features = Features.generate_other_related_features(df=df_full_features)
    nowcast_full_data, nowcast_pred_data = EMModel.nowcast(df_full_features, ts, fc, period=5, fq='1h', forecast_window=forecast_window, select_model=select_model)
    EMModel.explainable_nowcast(df_full_features, nowcast_pred_data, fc, specific_prediction_sample_to_explain=df.shape[0]+3, input_label_index_value=0, num_labels=1)

Tested Demo

## Important Links

License

Copyright 2021-2022 Ajay Arunachalam <[email protected]>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. © 2021 GitHub, Inc.

Owner
AjayAru
Data Science Manager; Certified Scrum Master; AWS Certified Cloud Solution Architect; AWS Certified Machine Learning Specialist
AjayAru
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
Code for CVPR 2021 paper: Anchor-Free Person Search

Introduction This is the implementationn for Anchor-Free Person Search in CVPR2021 License This project is released under the Apache 2.0 license. Inst

158 Jan 04, 2023
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Neural Network to colorize grayscale images

#colornet Neural Network to colorize grayscale images Results Grayscale Prediction Ground Truth Eiji K used colornet for anime colorization Sources Au

Pavel Hanchar 3.6k Dec 24, 2022
Neural Tangent Generalization Attacks (NTGA)

Neural Tangent Generalization Attacks (NTGA) ICML 2021 Video | Paper | Quickstart | Results | Unlearnable Datasets | Competitions | Citation Overview

Chia-Hung Yuan 34 Nov 25, 2022
Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Real-time face detection and emotion/gender classification using fer2013/imdb datasets with a keras CNN model and openCV.

Octavio Arriaga 5.3k Dec 30, 2022
Official PyTorch Implementation of GAN-Supervised Dense Visual Alignment

GAN-Supervised Dense Visual Alignment — Official PyTorch Implementation Paper | Project Page | Video This repo contains training, evaluation and visua

944 Jan 07, 2023
PyTorch implementation of HDN(Homography Decomposition Networks) for planar object tracking

Homography Decomposition Networks for Planar Object Tracking This project is the offical PyTorch implementation of HDN(Homography Decomposition Networ

CaptainHook 48 Dec 15, 2022
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
Pytorch reimplementation of the Mixer (MLP-Mixer: An all-MLP Architecture for Vision)

MLP-Mixer Pytorch reimplementation of Google's repository for the MLP-Mixer (Not yet updated on the master branch) that was released with the paper ML

Eunkwang Jeon 18 Dec 08, 2022
PAIRED in PyTorch 🔥

PAIRED This codebase provides a PyTorch implementation of Protagonist Antagonist Induced Regret Environment Design (PAIRED), which was first introduce

UCL DARK Lab 46 Dec 12, 2022
Adversarial Autoencoders

Adversarial Autoencoders (with Pytorch) Dependencies argparse time torch torchvision numpy itertools matplotlib Create Datasets python create_datasets

Felipe Ducau 188 Jan 01, 2023
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
ColBERT: Contextualized Late Interaction over BERT (SIGIR'20)

Update: if you're looking for ColBERTv2 code, you can find it alongside a new simpler API, in the branch new_api. ColBERT ColBERT is a fast and accura

Stanford Future Data Systems 637 Jan 08, 2023
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Programming with Neural Surrogates of Programs

Programming with Neural Surrogates of Programs

0 Dec 12, 2021