Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Overview

Deep-Unsupervised-Domain-Adaptation


Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Paper: Evaluation of Deep Neural Network Domain Adaptation Techniques for Image Recognition

Abstract

It has been well proved that deep networks are efficient at extracting features from a given (source) labeled dataset. However, it is not always the case that they can generalize well to other (target) datasets which very often have a different underlying distribution. In this report, we evaluate four different domain adaptation techniques for image classification tasks: Deep CORAL, Deep Domain Confusion (DDC), Conditional Adversarial Domain Adaptation (CDAN) and CDAN with Entropy Conditioning (CDAN+E). The selected domain adaptation techniques are unsupervised techniques where the target dataset will not carry any labels during training phase. The experiments are conducted on the office-31 dataset.

Results

Accuracy performance on the Office31 dataset for the source and domain data distributions (with and without transfer losses).

Deep CORAL DDC
CDAN CDAN+E

Target accuracies for all six domain shifts in Office31 dataset (amazon, webcam and dslr)

Method A → W A → D W → A W → D D → A D → W
No Adaptaion 43.1 ± 2.5 49.2 ± 3.7 35.6 ± 0.6 94.2 ± 3.1 35.4 ± 0.7 90.9 ± 2.4
DeepCORAL 49.5 ± 2.7 40.0 ± 3.3 38.3 ± 0.4 74.4 ± 4.3 38.5 ± 1.5 89.1 ± 4.4
DDC 41.7 ± 9.1 --- --- --- --- ---
CDAN 44.9 ± 3.3 49.5 ± 4.6 34.8 ± 2.4 93.3 ± 3.4 32.9 ± 3.4 88.3 ± 3.8
CDAN+E 48.7 ± 7.5 53.7 ± 4.7 35.3 ± 2.7 93.6 ± 3.4 33.9 ± 2.2 87.7 ± 4.0

Training and inference

To train the model in your computer you must download the Office31 dataset and put it in your data folder.

Execute training of a method by going to its folder (e.g. DeepCORAL):

cd DeepCORAL/
python main.py --epochs 100 --batch_size_source 128 --batch_size_target 128 --name_source amazon --name_target webcam

Loss and accuracy plots

Once the model is trained, you can generate plots like the ones shown above by running:

cd DeepCORAL/
python plot_loss_acc.py --source amazon --target webcam --no_epochs 10

The following is a list of the arguments the usuer can provide:

  • --epochs number of training epochs
  • --batch_size_source batch size of source data
  • --batch_size_target batch size of target data
  • --name_source name of source dataset
  • --name_target name of source dataset
  • --num_classes no. classes in dataset
  • --load_model flag to load pretrained model (AlexNet by default)
  • --adapt_domain bool argument to train with or without specific transfer loss

Requirements

  • tqdm
  • PyTorch
  • matplotlib
  • numpy
  • pickle
  • scikit-image
  • torchvision

References

Owner
Alan Grijalva
M. Sc. Student in Autonomous Systems, B. Sc. Physics.
Alan Grijalva
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
A-ESRGAN aims to provide better super-resolution images by using multi-scale attention U-net discriminators.

A-ESRGAN: Training Real-World Blind Super-Resolution with Attention-based U-net Discriminators The authors are hidden for the purpose of double blind

77 Dec 16, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

🦙 LaMa Image Inpainting, Resolution-robust Large Mask Inpainting with Fourier Convolutions, WACV 2022

Advanced Image Manipulation Lab @ Samsung AI Center Moscow 4.7k Dec 31, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Classical OCR DCNN reproduction based on PaddlePaddle framework.

Paddle-SVHN Classical OCR DCNN reproduction based on PaddlePaddle framework. This project reproduces Multi-digit Number Recognition from Street View I

1 Nov 12, 2021
一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

一个目标检测的通用框架(不需要cuda编译),支持Yolo全系列(v2~v5)、EfficientDet、RetinaNet、Cascade-RCNN等SOTA网络。

Haoyu Xu 203 Jan 03, 2023
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''.

P-tuning A novel method to tune language models. Codes and datasets for paper ``GPT understands, too''. How to use our code We have released the code

THUDM 562 Dec 27, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Invasive Plant Species Identification

Invasive_Plant_Species_Identification Used LiDAR Odometry and Mapping (LOAM) to create a 3D point cloud map which can be used to identify invasive pla

2 May 12, 2022