A multi-entity Transformer for multi-agent spatiotemporal modeling.

Overview

baller2vec

This is the repository for the paper:

Michael A. Alcorn and Anh Nguyen. baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling. arXiv. 2021.

Left: the input for baller2vec at each time step t is an unordered set of feature vectors containing information about the identities and locations of NBA players on the court. Right: baller2vec generalizes the standard Transformer to the multi-entity setting by employing a novel self-attention mask tensor. The mask is then reshaped into a matrix for compatibility with typical Transformer implementations.
By exclusively learning to predict the trajectory of the ball, baller2vec was able to infer idiosyncratic player attributes.
Further, nearest neighbors in baller2vec's embedding space are plausible doppelgängers. Credit for the images: Erik Drost, Keith Allison, Jose Garcia, Keith Allison, Verse Photography, and Joe Glorioso.
Additionally, several attention heads in baller2vec appear to perform different basketball-relevant functions, such as anticipating passes. Code to generate the GIF was adapted from @linouk23's NBA Player Movement's repository.
Here, a baller2vec model trained to simultaneously predict the trajectories of all the players on the court uses both the historical and current context to forecast the target player's trajectory at each time step. The left grid shows the target player's true trajectory at each time step while the right grid shows baller2vec's forecast distribution. The blue-bordered center cell is the "stationary" trajectory.

Citation

If you use this code for your own research, please cite:

@article{alcorn2021baller2vec,
   title={baller2vec: A Multi-Entity Transformer For Multi-Agent Spatiotemporal Modeling},
   author={Alcorn, Michael A. and Nguyen, Anh},
   journal={arXiv preprint arXiv:1609.03675},
   year={2021}
}

Training baller2vec

Setting up .basketball_profile

After you've cloned the repository to your desired location, create a file called .basketball_profile in your home directory:

nano ~/.basketball_profile

and copy and paste in the contents of .basketball_profile, replacing each of the variable values with paths relevant to your environment. Next, add the following line to the end of your ~/.bashrc:

source ~/.basketball_profile

and either log out and log back in again or run:

source ~/.bashrc

You should now be able to copy and paste all of the commands in the various instructions sections. For example:

echo ${PROJECT_DIR}

should print the path you set for PROJECT_DIR in .basketball_profile.

Installing the necessary Python packages

cd ${PROJECT_DIR}
pip3 install --upgrade -r requirements.txt

Organizing the play-by-play and tracking data

  1. Copy events.zip (which I acquired from here [mirror here] using https://downgit.github.io) to the DATA_DIR directory and unzip it:
mkdir -p ${DATA_DIR}
cp ${PROJECT_DIR}/events.zip ${DATA_DIR}
cd ${DATA_DIR}
unzip -q events.zip
rm events.zip

Descriptions for the various EVENTMSGTYPEs can be found here (mirror here).

  1. Clone the tracking data from here (mirror here) to the DATA_DIR directory:
cd ${DATA_DIR}
git clone [email protected]:linouk23/NBA-Player-Movements.git

A description of the tracking data can be found here.

Generating the training data

cd ${PROJECT_DIR}
nohup python3 generate_game_numpy_arrays.py > data.log &

You can monitor its progress with:

top

or:

ls -U ${GAMES_DIR} | wc -l

There should be 1,262 NumPy arrays (corresponding to 631 X/y pairs) when finished.

Animating a sequence

  1. If you don't have a display hooked up to your GPU server, you'll need to first clone the repository to your local machine and retrieve certain files from the remote server:
# From your local machine.
mkdir -p ~/scratch
cd ~/scratch

username=michael
server=gpu3.cse.eng.auburn.edu
data_dir=/home/michael/baller2vec_data
scp ${username}@${server}:${data_dir}/baller2vec_config.pydict .

games_dir=${data_dir}/games
gameid=0021500622

scp ${username}@${server}:${games_dir}/\{${gameid}_X.npy,${gameid}_y.npy\} .
  1. You can then run this code in the Python interpreter from within the repository (make sure you source .basketball_profile first if running locally):
import os

from animator import Game
from settings import DATA_DIR, GAMES_DIR

gameid = "0021500622"
try:
    game = Game(DATA_DIR, GAMES_DIR, gameid)
except FileNotFoundError:
    home_dir = os.path.expanduser("~")
    DATA_DIR = f"{home_dir}/scratch"
    GAMES_DIR = f"{home_dir}/scratch"
    game = Game(DATA_DIR, GAMES_DIR, gameid)

# https://youtu.be/FRrh_WkyXko?t=109
start_period = 3
start_time = "1:55"
stop_period = 3
stop_time = "1:51"
game.show_seq(start_period, start_time, stop_period, stop_time)

to generate the following animation:

Running the training script

Run (or copy and paste) the following script, editing the variables as appropriate.

#!/usr/bin/env bash

# Experiment identifier. Output will be saved to ${EXPERIMENTS_DIR}/${JOB}.
JOB=$(date +%Y%m%d%H%M%S)

# Training options.
echo "train:" >> ${JOB}.yaml
task=ball_traj  # ball_traj, ball_loc, event, player_traj, score, or seq2seq.
echo "  task: ${task}" >> ${JOB}.yaml
echo "  min_playing_time: 0" >> ${JOB}.yaml  # 0/13314/39917/1.0e+6 --> 100%/75%/50%/0%.
echo "  train_valid_prop: 0.95" >> ${JOB}.yaml
echo "  train_prop: 0.95" >> ${JOB}.yaml
echo "  train_samples_per_epoch: 20000" >> ${JOB}.yaml
echo "  valid_samples: 1000" >> ${JOB}.yaml
echo "  workers: 10" >> ${JOB}.yaml
echo "  learning_rate: 1.0e-5" >> ${JOB}.yaml
if [[ ("$task" = "event") || ("$task" = "score") ]]
then
    prev_model=False
    echo "  prev_model: ${prev_model}" >> ${JOB}.yaml
    if [[ "$prev_model" != "False" ]]
    then
        echo "  patience: 5" >> ${JOB}.yaml
    fi
fi

# Dataset options.
echo "dataset:" >> ${JOB}.yaml
echo "  hz: 5" >> ${JOB}.yaml
echo "  secs: 4" >> ${JOB}.yaml
echo "  player_traj_n: 11" >> ${JOB}.yaml
echo "  max_player_move: 4.5" >> ${JOB}.yaml
echo "  ball_traj_n: 19" >> ${JOB}.yaml
echo "  max_ball_move: 8.5" >> ${JOB}.yaml
echo "  n_players: 10" >> ${JOB}.yaml
echo "  next_score_change_time_max: 35" >> ${JOB}.yaml
echo "  n_time_to_next_score_change: 36" >> ${JOB}.yaml
echo "  n_ball_loc_x: 95" >> ${JOB}.yaml
echo "  n_ball_loc_y: 51" >> ${JOB}.yaml
echo "  ball_future_secs: 2" >> ${JOB}.yaml

# Model options.
echo "model:" >> ${JOB}.yaml
echo "  embedding_dim: 20" >> ${JOB}.yaml
echo "  sigmoid: none" >> ${JOB}.yaml
echo "  mlp_layers: [128, 256, 512]" >> ${JOB}.yaml
echo "  nhead: 8" >> ${JOB}.yaml
echo "  dim_feedforward: 2048" >> ${JOB}.yaml
echo "  num_layers: 6" >> ${JOB}.yaml
echo "  dropout: 0.0" >> ${JOB}.yaml
if [[ "$task" != "seq2seq" ]]
then
    echo "  use_cls: False" >> ${JOB}.yaml
    echo "  embed_before_mlp: True" >> ${JOB}.yaml
fi

# Save experiment settings.
mkdir -p ${EXPERIMENTS_DIR}/${JOB}
mv ${JOB}.yaml ${EXPERIMENTS_DIR}/${JOB}/

# Start training the model.
gpu=0
cd ${PROJECT_DIR}
nohup python3 train_baller2vec.py ${JOB} ${gpu} > ${EXPERIMENTS_DIR}/${JOB}/train.log &
Owner
Michael A. Alcorn
Brute-forcing my way through life.
Michael A. Alcorn
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
Automates Machine Learning Pipeline with Feature Engineering and Hyper-Parameters Tuning :rocket:

MLJAR Automated Machine Learning Documentation: https://supervised.mljar.com/ Source Code: https://github.com/mljar/mljar-supervised Table of Contents

MLJAR 2.4k Dec 31, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
PyTorch implementation of SmoothGrad: removing noise by adding noise.

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Styleformer - Official Pytorch Implementation

Styleformer -- Official PyTorch implementation Styleformer: Transformer based Generative Adversarial Networks with Style Vector(https://arxiv.org/abs/

Jeeseung Park 159 Dec 12, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
A unet implementation for Image semantic segmentation

Unet-pytorch a unet implementation for Image semantic segmentation 参考网上的Unet做分割的代码,做了一个针对kaggle地盐识别的,请去以下地址获取数据集: https://www.kaggle.com/c/tgs-salt-id

Rabbit 3 Jun 29, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Python package for multiple object tracking research with focus on laboratory animals tracking.

motutils is a Python package for multiple object tracking research with focus on laboratory animals tracking. Features loads: MOTChallenge CSV, sleap

Matěj Šmíd 2 Sep 05, 2022
adversarial_multi_armed_bandit_variable_plays

Adversarial Multi-Armed Bandit with Variable Plays This code is for paper: Adversarial Online Learning with Variable Plays in the Evasion-and-Pursuit

Yiyang Wang 1 Oct 28, 2021
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Barlow Twins and HSIC

Barlow Twins and HSIC Unofficial Pytorch implementation for Barlow Twins and HSIC_SSL on small datasets (CIFAR10, STL10, and Tiny ImageNet). Correspon

Yao-Hung Hubert Tsai 49 Nov 24, 2022