3D ResNet Video Classification accelerated by TensorRT

Overview

Activity Recognition TensorRT

Perform video classification using 3D ResNets trained on Kinetics-400 dataset and accelerated with TensorRT

ActivityGIF

P.S Click on the gif to watch the full-length video!

Index

TensorRT Installation

Assuming you have CUDA already installed, go ahead and download TensorRT from here.

Follow instructions of installing the system binaries and python package for tensorrt here.

Python dependencies

Install the necessary python dependencies by running the following command -

pip3 install -r requirements.txt

Clone the repository

This is a straightforward step, however, if you are new to git recommend glancing threw the steps.

First, install git

sudo apt install git

Next, clone the repository

# Using HTTPS
https://github.com/aj-ames/Activity-Recognition-TensorRT.git
# Using SSH
[email protected]:aj-ames/Activity-Recognition-TensorRT.git

Download Pretrained Models

Download models from google-drive and place them in the current directory.

Running the code

The code supports a number of command line arguments. Use help to see all supported arguments

➜ python3 action_recognition_tensorrt.py --help
usage: action_recognition_tensorrt.py [-h] [--stream STREAM] [--model MODEL] [--fp16] [--frameskip FRAMESKIP]

Object Detection using YOLOv4 and OpenCV4

optional arguments:
  -h, --help            show this help message and exit
  --stream STREAM       Path to use video stream
  --model MODEL         Path to model to use
  --fp16                To enable fp16 precision
  --frameskip FRAMESKIP
                        Number of frames to skip

Run the script this way:

# Video
python3 action_recognition_tensorrt.py --stream /path/to/video --model resnext-101-kinetics.onnx --fp16 --frameskip 3

# Webcam
python3 action_recognition_tensorrt.py --stream webcam --model resnext-101-kinetics.onnx --fp16 --frameskip 3

Citations

@article{hara3dcnns,
  author={Kensho Hara and Hirokatsu Kataoka and Yutaka Satoh},
  title={Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?},
  journal={arXiv preprint},
  volume={arXiv:1711.09577},
  year={2017},
}
Owner
Akash James
Tech Savage.
Akash James
[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

[ICCV'2021] Image Inpainting via Conditional Texture and Structure Dual Generation

Xiefan Guo 122 Dec 11, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Crab is a flexible, fast recommender engine for Python that integrates classic information filtering recommendation algorithms in the world of scientific Python packages (numpy, scipy, matplotlib).

Crab - A Recommendation Engine library for Python Crab is a flexible, fast recommender engine for Python that integrates classic information filtering r

python-recsys 1.2k Dec 21, 2022
CBKH: The Cornell Biomedical Knowledge Hub

Cornell Biomedical Knowledge Hub (CBKH) CBKG integrates data from 18 publicly available biomedical databases. The current version of CBKG contains a t

44 Dec 21, 2022
Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation"

CoCosNet Pytorch Implementation of the paper "Cross-domain Correspondence Learning for Exemplar-based Image Translation" (CVPR 2020 oral). Update: 202

Lingbo Yang 38 Sep 22, 2021
AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Ne

MALL Lab (IISc) 56 Dec 03, 2022
Current state of supervised and unsupervised depth completion methods

Awesome Depth Completion Table of Contents About Sparse-to-Dense Depth Completion Current State of Depth Completion Unsupervised VOID Benchmark Superv

224 Dec 28, 2022
fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

fastgradio is a python library to quickly build and share gradio interfaces of your trained fastai models.

Ali Abdalla 34 Jan 05, 2023
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Pytorch implementation of the paper "Class-Balanced Loss Based on Effective Number of Samples"

Class-balanced-loss-pytorch Pytorch implementation of the paper Class-Balanced Loss Based on Effective Number of Samples presented at CVPR'19. Yin Cui

Vandit Jain 697 Dec 29, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
Lyapunov-guided Deep Reinforcement Learning for Stable Online Computation Offloading in Mobile-Edge Computing Networks

PyTorch code to reproduce LyDROO algorithm [1], which is an online computation offloading algorithm to maximize the network data processing capability subject to the long-term data queue stability an

Liang HUANG 87 Dec 28, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Predictive Maintenance LSTM

Predictive-Maintenance-LSTM - Predictive maintenance study for Complex case study, we've obtained failure causes by operational error and more deeply by design mistakes.

Amir M. Sadafi 1 Dec 31, 2021