Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Related tags

Deep Learningfishr
Overview

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization

Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization | paper

Alexandre Ramé, Corentin Dancette, Matthieu Cord

Abstract

Learning robust models that generalize well under changes in the data distribution is critical for real-world applications. To this end, there has been a growing surge of interest to learn simultaneously from multiple training domains - while enforcing different types of invariance across those domains. Yet, all existing approaches fail to show systematic benefits under fair evaluation protocols.

In this paper, we propose a new learning scheme to enforce domain invariance in the space of the gradients of the loss function: specifically, we introduce a regularization term that matches the domain-level variances of gradients across training domains. Critically, our strategy, named Fishr, exhibits close relations with the Fisher Information and the Hessian of the loss. We show that forcing domain-level gradient covariances to be similar during the learning procedure eventually aligns the domain-level loss landscapes locally around the final weights.

Extensive experiments demonstrate the effectiveness of Fishr for out-of-distribution generalization. In particular, Fishr improves the state of the art on the DomainBed benchmark and performs significantly better than Empirical Risk Minimization.

Installation

Requirements overview

Our implementation relies on the BackPACK package in PyTorch to easily compute gradient variances.

  • python == 3.7.10
  • torch == 1.8.1
  • torchvision == 0.9.1
  • backpack-for-pytorch == 1.3.0
  • numpy == 1.20.2

Procedure

  1. Clone the repo:
$ git clone https://github.com/alexrame/fishr.git
  1. Install this repository and the dependencies using pip:
$ conda create --name fishr python=3.7.10
$ conda activate fishr
$ cd fishr
$ pip install -r requirements.txt

With this, you can edit the Fishr code on the fly.

Overview

This github enables the replication of our two main experiments: (1) on Colored MNIST in the setup defined by IRM and (2) on the DomainBed benchmark.

Colored MNIST in the IRM setup

We first validate that Fishr tackles distribution shifts on the synthetic Colored MNIST.

Main results (Table 2 in Section 6.A)

To reproduce the results from Table 2, call python3 coloredmnist/train_coloredmnist.py --algorithm $algorithm where algorithm is either:

Results will be printed at the end of the script, averaged over 10 runs. Note that all hyperparameters are taken from the seminal IRM implementation.

    Method | Train acc. | Test acc.  | Gray test acc.
   --------|------------|------------|----------------
    ERM    | 86.4 ± 0.2 | 14.0 ± 0.7 |   71.0 ± 0.7
    IRM    | 71.0 ± 0.5 | 65.6 ± 1.8 |   66.1 ± 0.2
    V-REx  | 71.7 ± 1.5 | 67.2 ± 1.5 |   68.6 ± 2.2
    Fishr  | 71.0 ± 0.9 | 69.5 ± 1.0 |   70.2 ± 1.1

Without label flipping (Table 5 in Appendix C.2.3)

The script coloredmnist.train_coloredmnist also accepts as input the argument --label_flipping_prob which defines the label flipping probability. By default, it's 0.25, so to reproduce the results from Table 5 you should set --label_flipping_prob 0.

Fishr variants (Table 6 in Appendix C.2.4)

This table considers two additional Fishr variants, reproduced with algorithm set to:

  • fishr_offdiagonal for Fishr but without centering the gradient variances
  • fishr_notcentered for Fishr but on the full covariance rather than only the diagonal

DomainBed

DomainBed is a PyTorch suite containing benchmark datasets and algorithms for domain generalization, as introduced in In Search of Lost Domain Generalization. Instructions below are copied and adapted from the official github.

Algorithms and hyperparameter grids

We added Fishr as a new algorithm here, and defined Fishr's hyperparameter grids here, as defined in Table 7 in Appendix D.

Datasets

We ran Fishr on following datasets:

Launch training

Download the datasets:

python3 -m domainbed.scripts.download\
       --data_dir=/my/data/dir

Train a model for debugging:

python3 -m domainbed.scripts.train\
       --data_dir=/my/data/dir/\
       --algorithm Fishr\
       --dataset ColoredMNIST\
       --test_env 2

Launch a sweep for hyperparameter search:

python -m domainbed.scripts.sweep launch\
       --data_dir=/my/data/dir/\
       --output_dir=/my/sweep/output/path\
       --command_launcher MyLauncher
       --datasets ColoredMNIST\
       --algorithms Fishr

Here, MyLauncher is your cluster's command launcher, as implemented in command_launchers.py.

Performances inspection (Tables 3 and 4 in Section 6.B.2, Tables in Appendix G)

To view the results of your sweep:

python -m domainbed.scripts.collect_results\
       --input_dir=/my/sweep/output/path

We inspect performances using following model selection criteria, that differ in what data is used to choose the best hyper-parameters for a given model:

  • OracleSelectionMethod (Oracle): A random subset from the data of the test domain.
  • IIDAccuracySelectionMethod (Training): A random subset from the data of the training domains.

Critically, Fishr performs consistently better than Empirical Risk Minimization.

Model selection Algorithm Colored MNIST Rotated MNIST VLCS PACS OfficeHome TerraIncognita DomainNet Avg
Oracle ERM 57.8 ± 0.2 97.8 ± 0.1 77.6 ± 0.3 86.7 ± 0.3 66.4 ± 0.5 53.0 ± 0.3 41.3 ± 0.1 68.7
Oracle Fishr 68.8 ± 1.4 97.8 ± 0.1 78.2 ± 0.2 86.9 ± 0.2 68.2 ± 0.2 53.6 ± 0.4 41.8 ± 0.2 70.8
Training ERM 51.5 ± 0.1 98.0 ± 0.0 77.5 ± 0.4 85.5 ± 0.2 66.5 ± 0.3 46.1 ± 1.8 40.9 ± 0.1 66.6
Training Fishr 52.0 ± 0.2 97.8 ± 0.0 77.8 ± 0.1 85.5 ± 0.4 67.8 ± 0.1 47.4 ± 1.6 41.7 ± 0.0 67.1

Conclusion

We addressed the task of out-of-distribution generalization for computer vision classification tasks. We derive a new and simple regularization - Fishr - that matches the gradient variances across domains as a proxy for matching domain-level Hessians. Our scalable strategy reaches state-of-the-art performances on the DomainBed benchmark and performs better than ERM. Our empirical experiments suggest that Fishr regularization would consistently improve a deep classifier in real-world applications when dealing with data from multiple domains. If you need help to use Fishr, please open an issue or contact [email protected].

Citation

If you find this code useful for your research, please consider citing our work (under review):

@article{rame2021ishr,
    title={Fishr: Invariant Gradient Variances for Out-of-distribution Generalization},
    author={Alexandre Rame and Corentin Dancette and Matthieu Cord},
    year={2021},
    journal={arXiv preprint arXiv:2109.02934}
}
Accelerated Multi-Modal MR Imaging with Transformers

Accelerated Multi-Modal MR Imaging with Transformers Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 torch==1.7.0 runstats==1.8.0 p

54 Dec 16, 2022
[ICCV'21] Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment

CKDN The official implementation of the ICCV2021 paper "Learning Conditional Knowledge Distillation for Degraded-Reference Image Quality Assessment" O

Multimedia Research 50 Dec 13, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Dense Gaussian Processes for Few-Shot Segmentation

DGPNet - Dense Gaussian Processes for Few-Shot Segmentation Welcome to the public repository for DGPNet. The paper is available at arxiv: https://arxi

37 Jan 07, 2023
Multi-Stage Progressive Image Restoration

Multi-Stage Progressive Image Restoration Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and Ling Sh

Syed Waqas Zamir 859 Dec 22, 2022
A Small and Easy approach to the BraTS2020 dataset (2D Segmentation)

BraTS2020 A Light & Scalable Solution to BraTS2020 | Medical Brain Tumor Segmentation (2D Segmentation) Developed the segmentation models for segregat

Gunjan Haldar 0 Jan 19, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Self Driving RC Car Code

Derp Learning Derp Learning is a Python package that collects data, trains models, and then controls an RC car for track racing. Hardware You will nee

Not Karol 39 Dec 07, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
AdaFocus V2: End-to-End Training of Spatial Dynamic Networks for Video Recognition

AdaFocusV2 This repo contains the official code and pre-trained models for AdaFo

79 Dec 26, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
CVPR 2021: "The Spatially-Correlative Loss for Various Image Translation Tasks"

Spatially-Correlative Loss arXiv | website We provide the Pytorch implementation of "The Spatially-Correlative Loss for Various Image Translation Task

Chuanxia Zheng 89 Jan 04, 2023
Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs

Hierarchical Clustering: O(1)-Approximation for Well-Clustered Graphs This repository contains code to accompany the paper "Hierarchical Clustering: O

3 Sep 25, 2022
This respository includes implementations on Manifoldron: Direct Space Partition via Manifold Discovery

Manifoldron: Direct Space Partition via Manifold Discovery This respository includes implementations on Manifoldron: Direct Space Partition via Manifo

dayang_wang 4 Apr 28, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022