The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

Related tags

Deep LearningD-REX
Overview

The repo contains the code to train and evaluate a system which extracts relations and explanations from dialogue.

How do I cite D-REX?

For now, cite the Arxiv paper

@article{albalak2021drex,
      title={D-REX: Dialogue Relation Extraction with Explanations}, 
      author={Alon Albalak and Varun Embar and Yi-Lin Tuan and Lise Getoor and William Yang Wang},
      journal={arXiv preprint arXiv:2109.05126},
      year={2021},
}

To train the full system:

GPU=0
bash train_drex_system.sh $GPU

Notes:

  • The training script is set up to work with an NVIDIA Titan RTX (24Gb memory, mixed-precision)
  • To train on a GPU with less memory, adjust the GPU_BATCH_SIZE parameter in train_drex_system.sh to match your memory limit.
  • Training the full system takes ~24 hours on a single NVIDIA Titan RTX

To test the trained system:

GPU=0
bash test_drex_system.sh $GPU

To train/test individual modules:

  • Relation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=relation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --relation_extraction_pretraining \
          > $MODEL_PATH/train_outputs.log
    • Testing:
      GPU=0
      MODEL_PATH=relation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      THRESHOLD1=$(echo $BEST_MODEL | grep -o "T1.....")
      THRESHOLD1=${THRESHOLD1: -2}
      THRESHOLD2=$(echo $BEST_MODEL | grep -o "T2.....")
      THRESHOLD2=${THRESHOLD2: -2}
      CUDA_VISIBLE_DEVICES=0 python3 test_relation_extraction_model.py \
          --model_class=relation_extraction_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --relation_extraction_pretraining \
          --threshold1=$THRESHOLD1 \
          --threshold2=$THRESHOLD2 \
          --data_split=test
  • Explanation Extraction Model -
    • Training:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      mkdir $MODEL_PATH
      CUDA_VISIBLE_DEVICES=$GPU python3 train_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=roberta-base \
          --base_model=roberta-base \
          --effective_batch_size=30 \
          --gpu_batch_size=30 \
          --fp16 \
          --output_dir=$MODEL_PATH \
          --explanation_policy_pretraining \
          > $MODEL_PATH/train_outputs.log    
    • Testing:
      GPU=0
      MODEL_PATH=explanation_extraction_model
      BEST_MODEL=$(ls $MODEL_PATH/F1* -d | sort -r | head -n 1)
      CUDA_VISIBLE_DEVICES=$GPU python3 test_explanation_policy.py \
          --model_class=explanation_policy_roberta \
          --model_name_or_path=$BEST_MODEL \
          --base_model=roberta-base \
          --explanation_policy_pretraining \
          --data_split=test
Owner
Alon Albalak
Alon Albalak
Learning recognition/segmentation models without end-to-end training. 40%-60% less GPU memory footprint. Same training time. Better performance.

InfoPro-Pytorch The Information Propagation algorithm for training deep networks with local supervision. (ICLR 2021) Revisiting Locally Supervised Lea

78 Dec 27, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution Network.

Lite-HRNet: A Lightweight High-Resolution Network Introduction This is an official pytorch implementation of Lite-HRNet: A Lightweight High-Resolution

HRNet 675 Dec 25, 2022
This repository is the code of the paper "Sparse Spatial Transformers for Few-Shot Learning".

🌟 Sparse Spatial Transformers for Few-Shot Learning This code implements the Sparse Spatial Transformers for Few-Shot Learning(SSFormers). Our code i

chx_nju 38 Dec 13, 2022
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Python Fanduel API (2021) - Lineup Automation

Southpaw is a python package that provides access to the Fanduel API. Optimize your DFS experience by programmatically updating your lineups, analyzin

Brandin Canfield 13 Jan 04, 2023
Codes of paper "Unseen Object Amodal Instance Segmentation via Hierarchical Occlusion Modeling"

Unseen Object Amodal Instance Segmentation (UOAIS) Seunghyeok Back, Joosoon Lee, Taewon Kim, Sangjun Noh, Raeyoung Kang, Seongho Bak, Kyoobin Lee This

GIST-AILAB 92 Dec 13, 2022
Effective Use of Transformer Networks for Entity Tracking

Effective Use of Transformer Networks for Entity Tracking (EMNLP19) This is a PyTorch implementation of our EMNLP paper on the effectiveness of pre-tr

5 Nov 06, 2021
Point Cloud Registration Network

PCRNet: Point Cloud Registration Network using PointNet Encoding Source Code Author: Vinit Sarode and Xueqian Li Paper | Website | Video | Pytorch Imp

ViNiT SaRoDe 59 Nov 19, 2022
Official repository of the AAAI'2022 paper "Contrast and Generation Make BART a Good Dialogue Emotion Recognizer"

CoG-BART Contrast and Generation Make BART a Good Dialogue Emotion Recognizer Quick Start: To run the model on test sets of four datasets, Download th

39 Dec 24, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

8 Nov 14, 2022
ETMO: Evolutionary Transfer Multiobjective Optimization

ETMO: Evolutionary Transfer Multiobjective Optimization To promote the research on ETMO, benchmark problems are of great importance to ETMO algorithm

Songbai Liu 0 Mar 16, 2021
Class-Balanced Loss Based on Effective Number of Samples. CVPR 2019

Class-Balanced Loss Based on Effective Number of Samples Tensorflow code for the paper: Class-Balanced Loss Based on Effective Number of Samples Yin C

Yin Cui 546 Jan 08, 2023
PyTorch implementation for OCT-GAN Neural ODE-based Conditional Tabular GANs (WWW 2021)

OCT-GAN: Neural ODE-based Conditional Tabular GANs (OCT-GAN) Code for reproducing the experiments in the paper: Jayoung Kim*, Jinsung Jeon*, Jaehoon L

BigDyL 7 Dec 27, 2022
[ICCV21] Code for RetrievalFuse: Neural 3D Scene Reconstruction with a Database

RetrievalFuse Paper | Project Page | Video RetrievalFuse: Neural 3D Scene Reconstruction with a Database Yawar Siddiqui, Justus Thies, Fangchang Ma, Q

Yawar Nihal Siddiqui 75 Dec 22, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Monify: an Expense tracker Program implemented in a Graphical User Interface that allows users to keep track of their expenses

💳 MONIFY (EXPENSE TRACKER PRO) 💳 Description Monify is an Expense tracker Program implemented in a Graphical User Interface allows users to add inco

Moyosore Weke 1 Dec 14, 2021