Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

Overview

DataTuner

You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task.

Installation

Environment Creation

Assuming you have an existing conda setup, you can setup the environment with the following script. In order to activate the conda environment within the bash script, you need the location of the conda.sh file:

bash setup.sh  ~/miniconda3/etc/profile.d/conda.sh

You can update your existing environment:

conda env update -f=environment.yml

To start development, activate your environment:

conda activate finetune

Alternatively, you can always use the python binary with the absolute path, e.g.: ~/miniconda3/envs/finetune/bin/python.

Data

For any task you want to fine-tune on, you need the data to be a json file containing a list of json objects, one per data point. For example:

[
  {
    "question": "question text 1",
    "query": "query 1"
  },
  {
    "question": "question text 2",
    "query": "query 2 with [SpecialToken example]"
  }
]

The library assumes that you have placed your data in a single directory with three files: train.json, validation.json, and test.json.

Configuration

Now that we have the data in shape, we need to create a new task configuration file that specifies how we want the data to be formatted and what fields should be considered. You can create new config files in the folder src/datatuner/lm/task_configs.

A typical config file would look as follows:

{
"name": "dataset_name",
"data_shape": [
        {
            "id": "<question>",
            "type": "special",
            "learn": false
        },
        {
            "id": "question",
            "type": "text",
            "learn": false
        },
        {
            "id": "<query>",
            "type": "special",
            "learn": false
        },
        {
            "id": "query",
            "type": "text",
            "learn": true,
            "metrics": [
                "match"
            ]
        }
    ],
"extra_special_tokens": ["[SpecialToken"],
"extra_fields": []
}

For each item in the data shape:

  • type (required): special if special token, text if normal text.
  • id (required): the special token ID if type is special; the key for the text in the json data if type is text
  • learn (required): whether to allow the model to learn this part of the text. If false, the model masks that part during fine-tuning.
  • metrics (optional): the list of metrics that the model should compute upon evaluation. Each metric should have a corresponding function with the same name in metrics.py.
  • converter (optional): the name of the converter function in converters.py to apply on that text field after reading the text from the file.

The value of extra_special_tokens is a list of special tokens to be added to the vocabulary. Alternatively (especially if the list is too long or is generated automatically), you can create a text file with one special token per line and pass that as an argument during training via the --special_tokens_file argument.

The value of extra_fields is a list of additional fields to include from the input json files to output during evaluation, aside from the main fields used as inputs/outputs.

Training

The training script train.py can be used in single GPU or multi GPU settings.

cd src/datatuner/lm

# single gpu
python train.py --model_checkpoint ~/data/openai-gpt/  --dataset_path ../../../data/my_dataset/  --task_config ./task_configs/my_task_config.json --n_epoch 3 --lr 1e-5

# multi gpu
python -m torch.distributed.launch --nproc_per_node=4 train.py --model_checkpoint ~/data/openai-gpt/  --dataset_path ../../../data/my_dataset/  --task_config ./task_configs/my_task_config.json --n_epoch 3 --lr 1e-5

Evaluating the Model

You can run the following to evaluate the model on any test set. The data format is the same as the training data. Notice that you have to currently specify the model_type parameter matching the model you're loading:

cd src/datatuner/lm

python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/2020-01-01_01-01-01  --filename ../../../data/my_dataset/test.json --max_length 200 --model_type gpt --top_k 1

# or if you just want to evaluate the latest model you trained 
RUN=$(ls -t ./runs | head -1) && python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/$RUN  --filename ../../../data/my_dataset/test.json --max_length 200 --model_type gpt  --top_k 1

# or if you want to use the latest intermediate checkpoint while the model is training:
RUN=$(ls -t ./runs | head -1) && CHECKPOINT=$(ls -t ./runs/$RUN/checkpoint* | head -1) && cp $CHECKPOINT runs/$RUN/pytorch_model.bin

During evaluation, the outputs that do not exactly match the expected outputs will be printed. Also, the metrics will be printed (a dictionary with keys <metric_name>_<field_name>). At the end of evaluation, you will find the file with all the generated ouputs in the file eval_results/<run_folder_name>/<task_name>_<test_file_name>_<model_type>_generated.json.

Interacting with the model

You can also interact with the models. The client will ask you to input the fields required, and it will generate the fields it learnt.

cd src/datatuner/lm

python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/2020-01-01_01-01-01  --max_length 200 --model_type gpt  --top_k 1 --input

# or if you just want to evaluate the latest model you trained 
RUN=$(ls -t ./runs | head -1) && python ./evaluate.py --task_config ./task_configs/my_task_config.json --model_checkpoint runs/$RUN  --max_length 200 --model_type gpt  --top_k 1 --input
Pure Javascript OCR for more than 100 Languages 📖🎉🖥

Version 2 is now available and under development in the master branch, read a story about v2: Why I refactor tesseract.js v2? Check the support/1.x br

Project Naptha 29.2k Jan 05, 2023
Characterizing possible failure modes in physics-informed neural networks.

Characterizing possible failure modes in physics-informed neural networks This repository contains the PyTorch source code for the experiments in the

Aditi Krishnapriyan 55 Jan 02, 2023
MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition

MORAN: A Multi-Object Rectified Attention Network for Scene Text Recognition Python 2.7 Python 3.6 MORAN is a network with rectification mechanism for

Canjie Luo 595 Dec 27, 2022
Um simples projeto para fazer o reconhecimento do captcha usado pelo jogo bombcrypto

CaptchaSolver - LEIA ISSO 😓 Para iniciar o codigo: pip install -r requirements.txt python captcha_solver.py Se você deseja pegar ver o resultado das

Kawanderson 50 Mar 21, 2022
FOTS Pytorch Implementation

News!!! Recognition branch now is added into model. The whole project has beed optimized and refactored. ICDAR Dataset SynthText 800K Dataset detectio

Ning Lu 599 Dec 19, 2022
Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Vedaldi, Andrew Zisserman, CVPR 2016.

SynthText Code for generating synthetic text images as described in "Synthetic Data for Text Localisation in Natural Images", Ankush Gupta, Andrea Ved

Ankush Gupta 1.8k Dec 28, 2022
Erosion and dialation using structure element in OpenCV python

Erosion and dialation using structure element in OpenCV python

Tamzid hasan 2 Nov 11, 2021
End-to-end pipeline for real-time scene text detection and recognition.

Real-time-Scene-Text-Detection-and-Recognition-System End-to-end pipeline for real-time scene text detection and recognition. The detection model use

Fangneng Zhan 89 Aug 04, 2022
PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application in real time.

PyNeuro PyNeuro is designed to connect NeuroSky's MindWave EEG device to Python and provide Callback functionality to provide data to your application

Zach Wang 45 Dec 30, 2022
⛓ marc is a small, but flexible Markov chain generator

About marc (markov chain) is a small, but flexible Markov chain generator. Usage marc is easy to use. To build a MarkovChain pass the object a sequenc

Max Humber 65 Oct 27, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
A synthetic data generator for text recognition

TextRecognitionDataGenerator A synthetic data generator for text recognition What is it for? Generating text image samples to train an OCR software. N

Edouard Belval 2.5k Jan 04, 2023
Balabobapy - Using artificial intelligence algorithms to continue the text

Balabobapy - Using artificial intelligence algorithms to continue the text

qxtony 1 Feb 04, 2022
Use Convolutional Recurrent Neural Network to recognize the Handwritten line text image without pre segmentation into words or characters. Use CTC loss Function to train.

Handwritten Line Text Recognition using Deep Learning with Tensorflow Description Use Convolutional Recurrent Neural Network to recognize the Handwrit

sushant097 224 Jan 07, 2023
QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021)

QuanTaichi: A Compiler for Quantized Simulations (SIGGRAPH 2021) Yuanming Hu, Jiafeng Liu, Xuanda Yang, Mingkuan Xu, Ye Kuang, Weiwei Xu, Qiang Dai, W

Taichi Developers 119 Dec 02, 2022
🖺 OCR using tensorflow with attention

tensorflow-ocr 🖺 OCR using tensorflow with attention, batteries included Installation git clone --recursive http://github.com/pannous/tensorflow-ocr

646 Nov 11, 2022
A tool to make dumpy among us GIFS

Among Us Dumpy Gif Maker Made by ThatOneCalculator & Pixer415 With help from Telk, karl-police, and auguwu! Please credit this repository when you use

Kainoa Kanter 535 Jan 07, 2023
BNF Globalization Code (CVPR 2016)

Boundary Neural Fields Globalization This is the code for Boundary Neural Fields globalization method. The technical report of the method can be found

25 Apr 15, 2022
A PyTorch implementation of ECCV2018 Paper: TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes

TextSnake: A Flexible Representation for Detecting Text of Arbitrary Shapes A PyTorch implement of TextSnake: A Flexible Representation for Detecting

Prince Wang 417 Dec 12, 2022
Simple app for visual editing of Page XML files

Name nw-page-editor - Simple app for visual editing of Page XML files. Version: 2021.02.22 Description nw-page-editor is an application for viewing/ed

Mauricio Villegas 27 Jun 20, 2022