Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Overview

Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods

Introduction

Graph Neural Networks (GNNs) have demonstrated superior performance in node classification or regression tasks, and have emerged as the state of the art in several applications. However, (inductive) GNNs require the edge connectivity structure of nodes to be known beforehand to work well. This is often not the case in several practical applications where the node degrees have power-law distributions, and nodes with a few connections might have noisy edges. An extreme case is the strict cold start (SCS) problem, where there is no neighborhood information available, forcing prediction models to rely completely on node features only. To study the viability of using inductive GNNs to solve the SCS problem, we introduce feature-contribution ratio (FCR), a metric to quantify the contribution of a node's features and that of its neighborhood in predicting node labels, and use this new metric as a model selection reward. We then propose Cold Brew, a new method that generalizes GNNs better in the SCS setting compared to pointwise and graph-based models, via a distillation approach. We show experimentally how FCR allows us to disentangle the contributions of various components of graph datasets, and demonstrate the superior performance of Cold Brew on several public benchmarks

Motivation

Long tail distribution is ubiquitously existed in large scale graph mining tasks. In some applications, some cold start nodes have too few or no neighborhood in the graph, which make graph based methods sub-optimal due to insufficient high quality edges to perform message passing.

gnns

gnns

Method

We improve teacher GNN with Structural Embedding, and propose student MLP model with latent neighborhood discovery step. We also propose a metric called FCR to judge the difficulty in cold start generalization.

gnns

coldbrew

Installation Guide

The following commands are used for installing key dependencies; other can be directly installed via pip or conda. A full redundant dependency list is in requirements.txt

pip install dgl
pip3 install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.9.0+cu111.html
pip install torch-geometric

Training Guide

In options/base_options.py, a full list of useable args is present, with default arguments and candidates initialized.

Comparing between traditional GCN (optimized with Initial/Jumping/Dense/PairNorm/NodeNorm/GroupNorm/Dropouts) and Cold Brew's GNN (optimized with Structural Embedding)

Train optimized traditional GNN:

python main.py --dataset='Cora' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 84.15

python main.py --dataset='Citeseer' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 71.00

python main.py --dataset='Pubmed' --train_which='TeacherGNN' --whetherHasSE='000' --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 78.2

Training Cold Brew's Teacher GNN:

python main.py --dataset='Cora' --train_which='TeacherGNN' --whetherHasSE='100' --se_reg=32 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 85.10

python main.py --dataset='Citeseer' --train_which='TeacherGNN' --whetherHasSE='100' --se_reg=0.5 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 71.40

python main.py --dataset='Pubmed' --train_which='TeacherGNN' --whetherHasSE='111' --se_reg=0.5 --want_headtail=1 --num_layers=2 --use_special_split=1 Result: 78.2

Comparing between MLP models:

Training naive MLP:

python main.py --dataset='Cora' --train_which='StudentBaseMLP' Result on isolation split: 63.92

Training GraphMLP:

python main.py --dataset='Cora' --train_which='GraphMLP' Result on isolation split: 68.63

Training Cold Brew's MLP:

python main.py --dataset='Cora' --train_which="SEMLP" --SEMLP_topK_2_replace=3 --SEMLP_part1_arch="2layer" --dropout_MLP=0.5 --studentMLP__opt_lr='torch.optim.Adam&0.005' Result on isolation split: 69.57

Hyperparameter meanings

--whetherHasSE: whether cold brew's TeacherGNN has structural embedding. The first ‘1’ means structural embedding exist in first layer; second ‘1’ means structural embedding exist in every middle layers; third ‘1’ means last layer.

--se_reg: regularization coefficient for cold brew teacher model's structural embedding.

--SEMLP_topK_2_replace: the number of top K best virtual neighbor nodes.

--manual_assign_GPU: set the GPU ID to train on. default=-9999, which means to dynamically choose GPU with most remaining memory.

Adaptation Guide

How to leverage this repo to train on other datasets:

In trainer.py, put any new graph dataset (node classification) under load_data() and return it.

what to load: return a dataset, which is a namespace, called 'data', data.x: 2D tensor, on cpu; shape = [N_nodes, dim_feature]. data.y: 1D tensor, on cpu; shape = [N_nodes]; values are integers, indicating the class of nodes. data.edge_index: tensor: [2, N_edge], cpu; edges contain self loop. data.train_mask: bool tensor, shape = [N_nodes], indicating the training node set. Template class for the 'data':

class MyDataset(torch_geometric.data.data.Data):
    def __init__(self):
        super().__init__()

Citation

comming soon.
CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner.

CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner. It is aimed to integrate this tool with several more features including providing a U

Ravi Prakash 3 Jun 27, 2021
nrgpy is the Python package for processing NRG Data Files

nrgpy nrgpy is the Python package for processing NRG Data Files Website and source: https://github.com/nrgpy/nrgpy Documentation: https://nrgpy.github

NRG Tech Services 23 Dec 08, 2022
pyhsmm MITpyhsmm - Bayesian inference in HSMMs and HMMs. MIT

Bayesian inference in HSMMs and HMMs This is a Python library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and expli

Matthew Johnson 527 Dec 04, 2022
MotorcycleParts DataAnalysis python

We work with the accounting department of a company that sells motorcycle parts. The company operates three warehouses in a large metropolitan area.

NASEEM A P 1 Jan 12, 2022
Deep universal probabilistic programming with Python and PyTorch

Getting Started | Documentation | Community | Contributing Pyro is a flexible, scalable deep probabilistic programming library built on PyTorch. Notab

7.7k Dec 30, 2022
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 09, 2023
Manage large and heterogeneous data spaces on the file system.

signac - simple data management The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, and reproduc

Glotzer Group 109 Dec 14, 2022
Vectorizers for a range of different data types

Vectorizers for a range of different data types

Tutte Institute for Mathematics and Computing 69 Dec 29, 2022
Developed for analyzing the covariance for OrcVIO

about This repo is developed for analyzing the covariance for OrcVIO environment setup platform ubuntu 18.04 using conda conda env create --file envir

Sean 1 Dec 08, 2021
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Python-based Space Physics Environment Data Analysis Software

pySPEDAS pySPEDAS is an implementation of the SPEDAS framework for Python. The Space Physics Environment Data Analysis Software (SPEDAS) framework is

SPEDAS 98 Dec 22, 2022
A Pythonic introduction to methods for scaling your data science and machine learning work to larger datasets and larger models, using the tools and APIs you know and love from the PyData stack (such as numpy, pandas, and scikit-learn).

This tutorial's purpose is to introduce Pythonistas to methods for scaling their data science and machine learning work to larger datasets and larger models, using the tools and APIs they know and lo

Coiled 102 Nov 10, 2022
A Python and R autograding solution

Otter-Grader Otter Grader is a light-weight, modular open-source autograder developed by the Data Science Education Program at UC Berkeley. It is desi

Infrastructure Team 93 Jan 03, 2023
Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

Using Data Science with Machine Learning techniques (ETL pipeline and ML pipeline) to classify received messages after disasters.

1 Feb 11, 2022
VevestaX is an open source Python package for ML Engineers and Data Scientists.

VevestaX Track failed and successful experiments as well as features. VevestaX is an open source Python package for ML Engineers and Data Scientists.

Vevesta 24 Dec 14, 2022
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
This is a repo documenting the best practices in PySpark.

Spark-Syntax This is a public repo documenting all of the "best practices" of writing PySpark code from what I have learnt from working with PySpark f

Eric Xiao 447 Dec 25, 2022
Average time per match by division

HW_02 Unzip matches.rar to access .json files for matches. Get an API key to access their data at: https://developer.riotgames.com/ Average time per m

11 Jan 07, 2022
Implementation in Python of the reliability measures such as Omega.

reliabiliPy Summary Simple implementation in Python of the [reliability](https://en.wikipedia.org/wiki/Reliability_(statistics) measures for surveys:

Rafael Valero Fernández 2 Apr 27, 2022
Kennedy Institute of Rheumatology University of Oxford Project November 2019

TradingBot6M Kennedy Institute of Rheumatology University of Oxford Project November 2019 Run Change api.txt to binance api key: https://www.binance.c

Kannan SAR 2 Nov 16, 2021