Code for the paper: Audio-Visual Scene Analysis with Self-Supervised Multisensory Features

Overview

[Paper] [Project page]

This repository contains code for the paper:

Andrew Owens, Alexei A. Efros. Audio-Visual Scene Analysis with Self-Supervised Multisensory Features. arXiv, 2018

Contents

This release includes code and models for:

  • On/off-screen source separation: separating the speech of an on-screen speaker from background sounds.
  • Blind source separation: audio-only source separation using u-net and PIT.
  • Sound source localization: visualizing the parts of a video that correspond to sound-making actions.
  • Self-supervised audio-visual features: a pretrained 3D CNN that can be used for downstream tasks (e.g. action recognition, source separation).

Setup

pip install tensorflow     # for CPU evaluation only
pip install tensorflow-gpu # for GPU support

We used TensorFlow version 1.8, which can be installed with:

pip install tensorflow-gpu==1.8
  • Install other python dependencies
pip install numpy matplotlib pillow scipy
  • Download the pretrained models and sample data
./download_models.sh
./download_sample_data.sh

Pretrained audio-visual features

We have provided the features for our fused audio-visual network. These features were learned through self-supervised learning. Please see shift_example.py for a simple example that uses these pretrained features.

Audio-visual source separation

To try the on/off-screen source separation model, run:

python sep_video.py ../data/translator.mp4 --model full --duration_mult 4 --out ../results/

This will separate a speaker's voice from that of an off-screen speaker. It will write the separated video files to ../results/, and will also display them in a local webpage, for easier viewing. This produces the following videos (click to watch):

Input On-screen Off-screen

We can visually mask out one of the two on-screen speakers, thereby removing their voice:

python sep_video.py ../data/crossfire.mp4 --model full --mask l --out ../results/
python sep_video.py ../data/crossfire.mp4 --model full --mask r --out ../results/

This produces the following videos (click to watch):

Source Left Right

Blind (audio-only) source separation

This baseline trains a u-net model to minimize a permutation invariant loss.

python sep_video.py ../data/translator.mp4 --model unet_pit --duration_mult 4 --out ../results/

The model will write the two separated streams in an arbitrary order.

Visualizing the locations of sound sources

To view the self-supervised network's class activation map (CAM), use the --cam flag:

python sep_video.py ../data/translator.mp4 --model full --cam --out ../results/

This produces a video in which the CAM is overlaid as a heat map:

Action recognition and fine-tuning

We have provided example code for training an action recognition model (e.g. on the UCF-101 dataset) in videocls.py). This involves fine-tuning our pretrained, audio-visual network. It is also possible to train this network with only visual data (no audio).

Citation

If you use this code in your research, please consider citing our paper:

@article{multisensory2018,
  title={Audio-Visual Scene Analysis with Self-Supervised Multisensory Features},
  author={Owens, Andrew and Efros, Alexei A},
  journal={arXiv preprint arXiv:1804.03641},
  year={2018}
}

Updates

  • 11/08/18: Fixed a bug in the class activation map example code. Added Tensorflow 1.9 compatibility.

Acknowledgements

Our u-net code draws from this implementation of pix2pix.

RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
Colossal-AI: A Unified Deep Learning System for Large-Scale Parallel Training

ColossalAI An integrated large-scale model training system with efficient parallelization techniques. arXiv: Colossal-AI: A Unified Deep Learning Syst

HPC-AI Tech 7.9k Jan 08, 2023
Code for "My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack" paper

Myo Keylogging This is the source code for our paper My(o) Armband Leaks Passwords: An EMG and IMU Based Keylogging Side-Channel Attack by Matthias Ga

Secure Mobile Networking Lab 7 Jan 03, 2023
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
A medical imaging framework for Pytorch

Welcome to MedicalTorch MedicalTorch is an open-source framework for PyTorch, implementing an extensive set of loaders, pre-processors and datasets fo

Christian S. Perone 799 Jan 03, 2023
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Recommendationsystem - Movie-recommendation - matrixfactorization colloborative filtering recommendation system user

recommendationsystem matrixfactorization colloborative filtering recommendation

kunal jagdish madavi 1 Jan 01, 2022
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
RLHive: a framework designed to facilitate research in reinforcement learning.

RLHive is a framework designed to facilitate research in reinforcement learning. It provides the components necessary to run a full RL experiment, for both single agent and multi agent environments.

88 Jan 05, 2023
[CoRL 21'] TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo

TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view Stereo Lukas Koestler1*    Nan Yang1,2*,†    Niclas Zeller2,3    Daniel Cremers1

TUM Computer Vision Group 744 Jan 04, 2023
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Deep Convolutional Generative Adversarial Networks

Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks Alec Radford, Luke Metz, Soumith Chintala All images in t

Alec Radford 3.4k Dec 29, 2022
Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields.

This repository contains the code release for Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fields. This implementation is written in JAX, and is a fork of Google's JaxNeRF

Google 625 Dec 30, 2022