Hera is a Python framework for constructing and submitting Argo Workflows.

Overview

Hera (hera-workflows)

The Argo was constructed by the shipwright Argus, and its crew were specially protected by the goddess Hera.

(https://en.wikipedia.org/wiki/Argo)

License: MIT

Hera is a Python framework for constructing and submitting Argo Workflows. The main goal of Hera is to make Argo Workflows more accessible by abstracting away some setup that is typically necessary for constructing Argo workflows.

Python functions are first class citizens in Hera - they are the atomic units (execution payload) that are submitted for remote execution. The framework makes it easy to wrap execution payloads into Argo Workflow tasks, set dependencies, resources, etc.

You can watch the introductory Hera presentation at the "Argo Workflows and Events Community Meeting 20 Oct 2021" here!

Table of content

Assumptions

Hera is exclusively dedicated to remote workflow submission and execution. Therefore, it requires an Argo server to be deployed to a Kubernetes cluster. Currently, Hera assumes that the Argo server sits behind an authentication layer that can authenticate workflow submission requests by using the Bearer token on the request. To learn how to deploy Argo to your own Kubernetes cluster you can follow the Argo Workflows guide!

Another option for workflow submission without the authentication layer is using port forwarding to your Argo server deployment and submitting workflows to localhost:2746 (2746 is the default, but you are free to use yours). Please refer to the documentation of Argo Workflows to see the command for port forward!

In the future some of these assumptions may either increase or decrease depending on the direction of the project. Hera is mostly designed for practical data science purposes, which assumes the presence of a DevOps team to set up an Argo server for workflow submission.

Installation

There are multiple ways to install Hera:

  1. You can install from PyPi:
pip install hera-workflows
  1. Install it directly from this repository using:
python -m pip install git+https://github.com/argoproj-labs/hera-workflows --ignore-installed
  1. Alternatively, you can clone this repository and then run the following to install:
python setup.py install

Contributing

If you plan to submit contributions to Hera you can install Hera in a virtual environment managed by pipenv:

pipenv shell
pipenv sync --dev --pre

Also, see the contributing guide!

Concepts

Currently, Hera is centered around two core concepts. These concepts are also used by Argo, which Hera aims to stay consistent with:

  • Task - the object that holds the Python function for remote execution/the atomic unit of execution;
  • Workflow - the higher level representation of a collection of tasks.

Examples

A very primitive example of submitting a task within a workflow through Hera is:

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    """
    This can be anything as long as the Docker image satisfies the dependencies. You can import anything Python 
    that is in your container e.g torch, tensorflow, scipy, biopython, etc - just provide an image to the task!
    """
    print(message)


ws = WorkflowService('my-argo-domain.com', 'my-argo-server-token')
w = Workflow('my-workflow', ws)
t = Task('say', say, [{'message': 'Hello, world!'}])
w.add_task(t)
w.submit()

Examples

See the examples directory for a collection of Argo workflow construction and submission via Hera!

Comparison

There are other libraries currently available for structuring and submitting Argo Workflows:

  • Couler, which aims to provide a unified interface for constructing and managing workflows on different workflow engines;
  • Argo Python DSL, which allows you to programmaticaly define Argo worfklows using Python.

While the aforementioned libraries provide amazing functionality for Argo workflow construction and submission, they require an advanced understanding of Argo concepts. When Dyno Therapeutics started using Argo Workflows, it was challenging to construct and submit experimental machine learning workflows. Scientists and engineers at Dyno Therapeutics used a lot of time for workflow definition rather than the implementation of the atomic unit of execution - the Python function - that performed, for instance, model training.

Hera presents a much simpler interface for task and workflow construction, empowering users to focus on their own executable payloads rather than workflow setup. Here's a side by side comparison of Hera, Argo Python DSL, and Couler:

Hera Couler Argo Python DSL

from hera.v1.task import Task
from hera.v1.workflow import Workflow
from hera.v1.workflow_service import WorkflowService


def say(message: str):
    print(message)


ws = WorkflowService('my-argo-server.com', 'my-auth-token')
w = Workflow('diamond', ws)
a = Task('A', say, [{'message': 'This is task A!'}])
b = Task('B', say, [{'message': 'This is task B!'}])
c = Task('C', say, [{'message': 'This is task C!'}])
d = Task('D', say, [{'message': 'This is task D!'}])

a.next(b).next(d)  # a >> b >> d
a.next(c).next(d)  # a >> c >> d

w.add_tasks(a, b, c, d)
w.submit()

B [lambda: job(name="A"), lambda: job(name="C")], # A -> C [lambda: job(name="B"), lambda: job(name="D")], # B -> D [lambda: job(name="C"), lambda: job(name="D")], # C -> D ] ) diamond() submitter = ArgoSubmitter() couler.run(submitter=submitter) ">
import couler.argo as couler
from couler.argo_submitter import ArgoSubmitter


def job(name):
    couler.run_container(
        image="docker/whalesay:latest",
        command=["cowsay"],
        args=[name],
        step_name=name,
    )


def diamond():
    couler.dag(
        [
            [lambda: job(name="A")],
            [lambda: job(name="A"), lambda: job(name="B")],  # A -> B
            [lambda: job(name="A"), lambda: job(name="C")],  # A -> C
            [lambda: job(name="B"), lambda: job(name="D")],  # B -> D
            [lambda: job(name="C"), lambda: job(name="D")],  # C -> D
        ]
    )


diamond()
submitter = ArgoSubmitter()
couler.run(submitter=submitter)

V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="B") @dependencies(["A"]) def B(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="C") @dependencies(["A"]) def C(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @task @parameter(name="message", value="D") @dependencies(["B", "C"]) def D(self, message: V1alpha1Parameter) -> V1alpha1Template: return self.echo(message=message) @template @inputs.parameter(name="message") def echo(self, message: V1alpha1Parameter) -> V1Container: container = V1Container( image="alpine:3.7", name="echo", command=["echo", "{{inputs.parameters.message}}"], ) return container ">
from argo.workflows.dsl import Workflow

from argo.workflows.dsl.tasks import *
from argo.workflows.dsl.templates import *


class DagDiamond(Workflow):

    @task
    @parameter(name="message", value="A")
    def A(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="B")
    @dependencies(["A"])
    def B(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="C")
    @dependencies(["A"])
    def C(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @task
    @parameter(name="message", value="D")
    @dependencies(["B", "C"])
    def D(self, message: V1alpha1Parameter) -> V1alpha1Template:
        return self.echo(message=message)

    @template
    @inputs.parameter(name="message")
    def echo(self, message: V1alpha1Parameter) -> V1Container:
        container = V1Container(
            image="alpine:3.7",
            name="echo",
            command=["echo", "{{inputs.parameters.message}}"],
        )

        return container

Owner
argoproj-labs
argoproj-labs
A simple streamlit webapp with multiple functionality

A simple streamlit webapp with multiple functionality

Omkar Pramod Hankare 2 Nov 24, 2021
Awesome Casino is simple offline casino made on python.

Awesome-Casino Awesome Casino is simple offline casino made on python. I found bug, what can i do? If you find any bug or want to suggest any idea, al

Herman 1 Feb 04, 2022
Distribute PySPI jobs across a PBS cluster

Distribute PySPI jobs across a PBS cluster This repository contains scripts for distributing PySPI jobs across a PBS-type cluster. Each job will conta

Oliver Cliff 1 Feb 10, 2022
OpenTable Reservation Maker For Python

OpenTable-Reservation-Maker The code that corresponds with this blog post on writing a script to make reservations for me on opentable Getting started

JonLuca De Caro 36 Nov 10, 2022
IPO Checker for NEPSE

IPO Checker Checks more than one account for an IPO. Usage: ipo_checker.py [-h] --file FILE IPO Checker for a list. optional arguments: -h, --help

Sagar Tamang 4 Sep 20, 2022
A discord group chat creator just made it because i saw people selling this stuff for like up to 40 bucks

gccreator some discord group chat tools just made it because i saw people selling this stuff for like up to 40 bucks (im currently working on a faster

baum1810 6 Oct 03, 2022
Library support get vocabulary from MEM

Features: Support scraping the courses in MEM to take the vocabulary Translate the words to your own language Get the IPA for the English course Insta

Joseph Quang 4 Aug 13, 2022
Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Improving the Transferability of Adversarial Examples with Resized-Diverse-Inputs, Diversity-Ensemble and Region Fitting

Junhua Zou 7 Oct 20, 2022
Web app for keeping track of buildings in danger of collapsing in the event of an earthquake

Bulina Roșie 🇷🇴 Un cutremur în București nu este o situație ipotetică. Este o certitudine că acest lucru se va întâmpla. În acest context, la mai bi

Code for Romania 27 Nov 29, 2022
Explore-bikeshare-data - GitHub project as part of the Programming for Data Science with Python Nanodegree from Udacity

Date created February 10, 2022 Project Title Explore US Bikeshare Data Descripti

Thárcyla 1 Feb 14, 2022
A notebook explaining the principle of adversarial attacks and their defences

TL;DR: A notebook explaining the principle of adversarial attacks and their defences Abstract: Deep neural networks models have been wildly successful

1 Jan 22, 2022
A simple interface to help lazy people like me to shutdown/reboot/sleep their computer remotely.

🦥 Lazy Helper ! A simple interface to help lazy people like me to shut down/reboot/sleep/lock/etc. their computer remotely. - USAGE If you're a lazy

MeHDI Rh 117 Nov 30, 2022
Covid-19-Trends - A project that me and my friends created as the CSC110 Final Project at UofT

Covid-19-Trends Introduction The COVID-19 pandemic has caused severe financial s

1 Jan 07, 2022
FBChecker Account using python , package requests and web old facebook

fbcek FBChecker Account using python , package requests and web old facebook using python 3.x apt upgrade -y apt update -y pkg install bash -y pkg ins

XnuxersXploitXen 5 Dec 24, 2022
personal dotfiles for rolling release linux distros

dotfiles Screenshots: Directions: Deploy my dotfiles with yadm Packages from arch listed in .installed-packages Information on osu! see ~/Games/osu!/.

-pacer- 0 Sep 18, 2022
Python Classes Without Boilerplate

attrs is the Python package that will bring back the joy of writing classes by relieving you from the drudgery of implementing object protocols (aka d

The attrs Cabal 4.6k Jan 02, 2023
Install packages with pip as if you were in the past!

A PyPI time machine Do you wish you could just install packages with pip as if you were at some fixed date in the past? If so, the PyPI time machine i

Thomas Robitaille 51 Jan 09, 2023
Repository voor verhalen over de woningbouw-opgave in Nederland

Analyse plancapaciteit woningen In deze notebook zetten we cijfers op een rij om de woningbouwplannen van Nederlandse gemeenten in kaart te kunnen bre

Follow the Money 10 Jun 30, 2022
Get information about what a Python frame is currently doing, particularly the AST node being executed

executing This mini-package lets you get information about what a frame is currently doing, particularly the AST node being executed. Usage Getting th

Alex Hall 211 Jan 01, 2023
Connect Playground - easy way to fill in your account with production-like objects

Just set of scripts to initialise accpunt with production-like data: A - Basic Distributor Account Initialization INPUT Distributor Account Token ACTI

CloudBlue 5 Jun 25, 2021