MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

Related tags

Deep Learningmdetr
Overview

MDETR: Modulated Detection for End-to-End Multi-Modal Understanding

WebsiteColabPaper

This repository contains code and links to pre-trained models for MDETR (Modulated DETR) for pre-training on data having aligned text and images with box annotations, as well as fine-tuning on tasks requiring fine grained understanding of image and text.

We show big gains on the phrase grounding task (Flickr30k), Referring Expression Comprehension (RefCOCO, RefCOCO+ and RefCOCOg) as well as Referring Expression Segmentation (PhraseCut, CLEVR Ref+). We also achieve competitive performance on visual question answering (GQA, CLEVR).

MDETR

TL;DR. We depart from the fixed frozen object detector approach of several popular vision + language pre-trained models and achieve true end-to-end multi-modal understanding by training our detector in the loop. In addition, we only detect objects that are relevant to the given text query, where the class labels for the objects are just the relevant words in the text query. This allows us to expand our vocabulary to anything found in free form text, making it possible to detect and reason over novel combination of object classes and attributes.

For details, please see the paper: MDETR - Modulated Detection for End-to-End Multi-Modal Understanding by Aishwarya Kamath, Mannat Singh, Yann LeCun, Ishan Misra, Gabriel Synnaeve and Nicolas Carion.

Aishwarya Kamath and Nicolas Carion made equal contributions to this codebase.

Usage

The requirements file has all the dependencies that are needed by MDETR.

We provide instructions how to install dependencies via conda. First, clone the repository locally:

git clone https://github.com/ashkamath/mdetr.git

Make a new conda env and activate it:

conda create -n mdetr_env python=3.8
conda activate mdetr_env

Install the the packages in the requirements.txt:

pip install -r requirements.txt

Multinode training

Distributed training is available via Slurm and submitit:

pip install submitit

Pre-training

The links to data, steps for data preparation and script for running finetuning can be found in Pretraining Instructions We also provide the pre-trained model weights for MDETR trained on our combined aligned dataset of 1.3 million images paired with text.

The models are summarized in the following table. Note that the performance reported is "raw", without any fine-tuning. For each dataset, we report the class-agnostic box [email protected], which measures how well the model finds the boxes mentioned in the text. All performances are reported on the respective validation sets of each dataset.

Backbone GQA Flickr Refcoco Url
Size
AP AP [email protected] AP Refcoco [email protected] Refcoco+ [email protected] Refcocog [email protected]
1 R101 58.9 75.6 82.5 60.3 72.1 58.0 55.7 model 3GB
2 ENB3 59.5 76.6 82.9 57.6 70.2 56.7 53.8 model 2.4GB
3 ENB5 59.9 76.4 83.7 61.8 73.4 58.8 57.1 model 2.7GB

Downstream tasks

Phrase grounding on Flickr30k

Instructions for data preparation and script to run evaluation can be found at Flickr30k Instructions

AnyBox protocol

Backbone Pre-training Image Data Val [email protected] Val [email protected] Val [email protected] Test [email protected] Test [email protected] Test [email protected] url size
Resnet-101 COCO+VG+Flickr 82.5 92.9 94.9 83.4 93.5 95.3 model 3GB
EfficientNet-B3 COCO+VG+Flickr 82.9 93.2 95.2 84.0 93.8 95.6 model 2.4GB
EfficientNet-B5 COCO+VG+Flickr 83.6 93.4 95.1 84.3 93.9 95.8 model 2.7GB

MergedBox protocol

Backbone Pre-training Image Data Val [email protected] Val [email protected] Val [email protected] Test [email protected] Test [email protected] Test [email protected] url size
Resnet-101 COCO+VG+Flickr 82.3 91.8 93.7 83.8 92.7 94.4 model 3GB

Referring expression comprehension on RefCOCO, RefCOCO+, RefCOCOg

Instructions for data preparation and script to run finetuning and evaluation can be found at Referring Expression Instructions

RefCOCO

Backbone Pre-training Image Data Val TestA TestB url size
Resnet-101 COCO+VG+Flickr 86.75 89.58 81.41 model 3GB
EfficientNet-B3 COCO+VG+Flickr 87.51 90.40 82.67 model 2.4GB

RefCOCO+

Backbone Pre-training Image Data Val TestA TestB url size
Resnet-101 COCO+VG+Flickr 79.52 84.09 70.62 model 3GB
EfficientNet-B3 COCO+VG+Flickr 81.13 85.52 72.96 model 2.4GB

RefCOCOg

Backbone Pre-training Image Data Val Test url size
Resnet-101 COCO+VG+Flickr 81.64 80.89 model 3GB
EfficientNet-B3 COCO+VG+Flickr 83.35 83.31 model 2.4GB

Referring expression segmentation on PhraseCut

Instructions for data preparation and script to run finetuning and evaluation can be found at PhraseCut Instructions

Backbone M-IoU Precision @0.5 Precision @0.7 Precision @0.9 url size
Resnet-101 53.1 56.1 38.9 11.9 model 1.5GB
EfficientNet-B3 53.7 57.5 39.9 11.9 model 1.2GB

Visual question answering on GQA

Instructions for data preparation and scripts to run finetuning and evaluation can be found at GQA Instructions

Backbone Test-dev Test-std url size
Resnet-101 62.48 61.99 model 3GB
EfficientNet-B5 62.95 62.45 model 2.7GB

Long-tailed few-shot object detection

Instructions for data preparation and scripts to run finetuning and evaluation can be found at LVIS Instructions

Data AP AP 50 AP r APc AP f url size
1% 16.7 25.8 11.2 14.6 19.5 model 3GB
10% 24.2 38.0 20.9 24.9 24.3 model 3GB
100% 22.5 35.2 7.4 22.7 25.0 model 3GB

Synthetic datasets

Instructions to reproduce our results on CLEVR-based datasets are available at CLEVR instructions

Overall Accuracy Count Exist
Compare Number Query Attribute Compare Attribute Url Size
99.7 99.3 99.9 99.4 99.9 99.9 model 446MB

License

MDETR is released under the Apache 2.0 license. Please see the LICENSE file for more information.

Citation

If you find this repository useful please give it a star and cite as follows! :) :

    @article{kamath2021mdetr,
      title={MDETR--Modulated Detection for End-to-End Multi-Modal Understanding},
      author={Kamath, Aishwarya and Singh, Mannat and LeCun, Yann and Misra, Ishan and Synnaeve, Gabriel and Carion, Nicolas},
      journal={arXiv preprint arXiv:2104.12763},
      year={2021}
    }
Owner
Aishwarya Kamath
Find me @ ashkamath.github.io
Aishwarya Kamath
TLDR: Twin Learning for Dimensionality Reduction

TLDR (Twin Learning for Dimensionality Reduction) is an unsupervised dimensionality reduction method that combines neighborhood embedding learning with the simplicity and effectiveness of recent self

NAVER 105 Dec 28, 2022
Machine learning, in numpy

numpy-ml Ever wish you had an inefficient but somewhat legible collection of machine learning algorithms implemented exclusively in NumPy? No? Install

David Bourgin 11.6k Dec 30, 2022
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning"

MarginGAN This repository is the implementation of the paper "MarginGAN: Adversarial Training in Semi-Supervised Learning". 1."preliminary" is the imp

Van 7 Dec 23, 2022
The official pytorch implemention of the CVPR paper "Temporal Modulation Network for Controllable Space-Time Video Super-Resolution".

This is the official PyTorch implementation of TMNet in the CVPR 2021 paper "Temporal Modulation Network for Controllable Space-Time VideoSuper-Resolu

Gang Xu 95 Oct 24, 2022
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localization and Semantic Segmentation (CVPR 2022)

CCAM (Unsupervised) Code repository for our paper "CCAM: Contrastive learning of Class-agnostic Activation Map for Weakly Supervised Object Localizati

Computer Vision Insitute, SZU 113 Dec 27, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representation from common sense knowledge graphs.

ZSL-KG is a general-purpose zero-shot learning framework with a novel transformer graph convolutional network (TrGCN) to learn class representa

Bats Research 94 Nov 21, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
An Unpaired Sketch-to-Photo Translation Model

Unpaired-Sketch-to-Photo-Translation We have released our code at https://github.com/rt219/Unsupervised-Sketch-to-Photo-Synthesis This project is the

38 Oct 28, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

Twitter Research 227 Jan 05, 2023
Code repository for our paper regarding the L3D dataset.

The Large Labelled Logo Dataset (L3D): A Multipurpose and Hand-Labelled Continuously Growing Dataset Website: https://lhf-labs.github.io/tm-dataset Da

LHF Labs 9 Dec 14, 2022
NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

NVTabular is a feature engineering and preprocessing library for tabular data designed to quickly and easily manipulate terabyte scale datasets used to train deep learning based recommender systems.

880 Jan 07, 2023