PyTorch implementation of Super SloMo by Jiang et al.

Overview

Super-SloMo MIT Licence

PyTorch implementation of "Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation" by Jiang H., Sun D., Jampani V., Yang M., Learned-Miller E. and Kautz J. [Project] [Paper]

Check out our paper "Deep Slow Motion Video Reconstruction with Hybrid Imaging System" published in TPAMI.

Results

Results on UCF101 dataset using the evaluation script provided by paper's author. The get_results_bug_fixed.sh script was used. It uses motions masks when calculating PSNR, SSIM and IE.

Method PSNR SSIM IE
DVF 29.37 0.861 16.37
SepConv - L_1 30.18 0.875 15.54
SepConv - L_F 30.03 0.869 15.78
SuperSloMo_Adobe240fps 29.80 0.870 15.68
pretrained mine 29.77 0.874 15.58
SuperSloMo 30.22 0.880 15.18

Prerequisites

This codebase was developed and tested with pytorch 0.4.1 and CUDA 9.2 and Python 3.6. Install:

For GPU, run

conda install pytorch=0.4.1 cuda92 torchvision==0.2.0 -c pytorch

For CPU, run

conda install pytorch-cpu=0.4.1 torchvision-cpu==0.2.0 cpuonly -c pytorch

Training

Preparing training data

In order to train the model using the provided code, the data needs to be formatted in a certain manner. The create_dataset.py script uses ffmpeg to extract frames from videos.

Adobe240fps

For adobe240fps, download the dataset, unzip it and then run the following command

python data\create_dataset.py --ffmpeg_dir path\to\folder\containing\ffmpeg --videos_folder path\to\adobe240fps\videoFolder --dataset_folder path\to\dataset --dataset adobe240fps

Custom

For custom dataset, run the following command

python data\create_dataset.py --ffmpeg_dir path\to\folder\containing\ffmpeg --videos_folder path\to\adobe240fps\videoFolder --dataset_folder path\to\dataset

The default train-test split is 90-10. You can change that using command line argument --train_test_split.

Run the following commmand for help / more info

python data\create_dataset.py --h

Training

In the train.ipynb, set the parameters (dataset path, checkpoint directory, etc.) and run all the cells.

or to train from terminal, run:

python train.py --dataset_root path\to\dataset --checkpoint_dir path\to\save\checkpoints

Run the following commmand for help / more options like continue from checkpoint, progress frequency etc.

python train.py --h

Tensorboard

To get visualization of the training, you can run tensorboard from the project directory using the command:

tensorboard --logdir log --port 6007

and then go to https://localhost:6007.

Evaluation

Pretrained model

You can download the pretrained model trained on adobe240fps dataset here.

Video Converter

You can convert any video to a slomo or high fps video (or both) using video_to_slomo.py. Use the command

# Windows
python video_to_slomo.py --ffmpeg path\to\folder\containing\ffmpeg --video path\to\video.mp4 --sf N --checkpoint path\to\checkpoint.ckpt --fps M --output path\to\output.mkv

# Linux
python video_to_slomo.py --video path\to\video.mp4 --sf N --checkpoint path\to\checkpoint.ckpt --fps M --output path\to\output.mkv

If you want to convert a video from 30fps to 90fps set fps to 90 and sf to 3 (to get 3x frames than the original video).

Run the following commmand for help / more info

python video_to_slomo.py --h

You can also use eval.py if you do not want to use ffmpeg. You will instead need to install opencv-python using pip for video IO. A sample usage would be:

python eval.py data/input.mp4 --checkpoint=data/SuperSloMo.ckpt --output=data/output.mp4 --scale=4

Use python eval.py --help for more details

More info TBA

References:

Parts of the code is based on TheFairBear/Super-SlowMo

Owner
Avinash Paliwal
PhD Student at Texas A&M University
Avinash Paliwal
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
Software associated to AAAI paper "Planning with Biological Neurons and Synapses"

jBrain Software associated with the AAAI 2022 paper Francesco D'Amore, Daniel Mitropolsky, Pierluigi Crescenzi, Emanuele Natale, Christos H. Papadimit

Pierluigi Crescenzi 1 Apr 10, 2022
Orchestrating Distributed Materials Acceleration Platform Tutorial

Orchestrating Distributed Materials Acceleration Platform Tutorial This tutorial for orchestrating distributed materials acceleration platform was pre

BIG-MAP 1 Jan 25, 2022
(Personalized) Page-Rank computation using PyTorch

torch-ppr This package allows calculating page-rank and personalized page-rank via power iteration with PyTorch, which also supports calculation on GP

Max Berrendorf 69 Dec 03, 2022
Simulation environments for the CrazyFlie quadrotor: Used for Reinforcement Learning and Sim-to-Real Transfer

Phoenix-Drone-Simulation An OpenAI Gym environment based on PyBullet for learning to control the CrazyFlie quadrotor: Can be used for Reinforcement Le

Sven Gronauer 8 Dec 07, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Codebase for the Summary Loop paper at ACL2020

Summary Loop This repository contains the code for ACL2020 paper: The Summary Loop: Learning to Write Abstractive Summaries Without Examples. Training

Canny Lab @ The University of California, Berkeley 44 Nov 04, 2022
PyTorch reimplementation of minimal-hand (CVPR2020)

Minimal Hand Pytorch Unofficial PyTorch reimplementation of minimal-hand (CVPR2020). you can also find in youtube or bilibili bare hand youtube or bil

Hao Meng 228 Dec 29, 2022
SOFT: Softmax-free Transformer with Linear Complexity, NeurIPS 2021 Spotlight

SOFT: Softmax-free Transformer with Linear Complexity SOFT: Softmax-free Transformer with Linear Complexity, Jiachen Lu, Jinghan Yao, Junge Zhang, Xia

Fudan Zhang Vision Group 272 Dec 25, 2022
đŸ•šī¸ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022