flask extension for integration with the awesome pydantic package

Overview

Flask-Pydantic

Actions Status PyPI Language grade: Python License Code style

Flask extension for integration of the awesome pydantic package with Flask.

Installation

python3 -m pip install Flask-Pydantic

Basics

URL query and body parameters

validate decorator validates query and body request parameters and makes them accessible two ways:

  1. Using validate arguments, via flask's request variable
parameter type request attribute name
query query_params
body body_params
  1. Using the decorated function argument parameters type hints

URL path parameter

If you use annotated path URL path parameters as follows

@app.route("/users/", methods=["GET"])
@validate()
def get_user(user_id: str):
    pass

flask_pydantic will parse and validate user_id variable in the same manner as for body and query parameters.


Additional validate arguments

  • Success response status code can be modified via on_success_status parameter of validate decorator.
  • response_many parameter set to True enables serialization of multiple models (route function should therefore return iterable of models).
  • request_body_many parameter set to False analogically enables serialization of multiple models inside of the root level of request body. If the request body doesn't contain an array of objects 400 response is returned,
  • If validation fails, 400 response is returned with failure explanation.

For more details see in-code docstring or example app.

Usage

Example 1: Query parameters only

Simply use validate decorator on route function.

Be aware that @app.route decorator must precede @validate (i. e. @validate must be closer to the function declaration).

from typing import Optional
from flask import Flask, request
from pydantic import BaseModel

from flask_pydantic import validate

app = Flask("flask_pydantic_app")

class QueryModel(BaseModel):
  age: int

class ResponseModel(BaseModel):
  id: int
  age: int
  name: str
  nickname: Optional[str]

# Example 1: query parameters only
@app.route("/", methods=["GET"])
@validate()
def get(query: QueryModel):
  age = query.age
  return ResponseModel(
    age=age,
    id=0, name="abc", nickname="123"
    )
See the full example app here
  • age query parameter is a required int
    • curl --location --request GET 'http://127.0.0.1:5000/'
    • if none is provided the response contains:
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "field required",
              "type": "value_error.missing"
            }
          ]
        }
      }
    • for incompatible type (e. g. string /?age=not_a_number)
    • curl --location --request GET 'http://127.0.0.1:5000/?age=abc'
      {
        "validation_error": {
          "query_params": [
            {
              "loc": ["age"],
              "msg": "value is not a valid integer",
              "type": "type_error.integer"
            }
          ]
        }
      }
  • likewise for body parameters
  • example call with valid parameters: curl --location --request GET 'http://127.0.0.1:5000/?age=20'

-> {"id": 0, "age": 20, "name": "abc", "nickname": "123"}

Example 2: URL path parameter

@app.route("/character//", methods=["GET"])
@validate()
def get_character(character_id: int):
    characters = [
        ResponseModel(id=1, age=95, name="Geralt", nickname="White Wolf"),
        ResponseModel(id=2, age=45, name="Triss Merigold", nickname="sorceress"),
        ResponseModel(id=3, age=42, name="Julian Alfred Pankratz", nickname="Jaskier"),
        ResponseModel(id=4, age=101, name="Yennefer", nickname="Yenn"),
    ]
    try:
        return characters[character_id]
    except IndexError:
        return {"error": "Not found"}, 400

Example 3: Request body only

class RequestBodyModel(BaseModel):
  name: str
  nickname: Optional[str]

# Example2: request body only
@app.route("/", methods=["POST"])
@validate()
def post(body: RequestBodyModel): 
  name = body.name
  nickname = body.nickname
  return ResponseModel(
    name=name, nickname=nickname,id=0, age=1000
    )
See the full example app here

Example 4: BOTH query paramaters and request body

# Example 3: both query paramters and request body
@app.route("/both", methods=["POST"])
@validate()
def get_and_post(body: RequestBodyModel,query: QueryModel):
  name = body.name # From request body
  nickname = body.nickname # From request body
  age = query.age # from query parameters
  return ResponseModel(
    age=age, name=name, nickname=nickname,
    id=0
  )
See the full example app here

Modify response status code

The default success status code is 200. It can be modified in two ways

  • in return statement
# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel)
def post():
    return ResponseModel(
            id=id_,
            age=request.query_params.age,
            name=request.body_params.name,
            nickname=request.body_params.nickname,
        ), 201
  • in validate decorator
@app.route("/", methods=["POST"])
@validate(body=BodyModel, query=QueryModel, on_success_status=201)
def post():
    ...

Status code in case of validation error can be modified using FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE flask configuration variable.

Using the decorated function kwargs

Instead of passing body and query to validate, it is possible to directly defined them by using type hinting in the decorated function.

# necessary imports, app and models definition
...

@app.route("/", methods=["POST"])
@validate()
def post(body: BodyModel, query: QueryModel):
    return ResponseModel(
            id=id_,
            age=query.age,
            name=body.name,
            nickname=body.nickname,
        )

This way, the parsed data will be directly available in body and query. Furthermore, your IDE will be able to correctly type them.

Model aliases

Pydantic's alias feature is natively supported for query and body models. To use aliases in response modify response model

def modify_key(text: str) -> str:
    # do whatever you want with model keys
    return text


class MyModel(BaseModel):
    ...
    class Config:
        alias_generator = modify_key
        allow_population_by_field_name = True

and set response_by_alias=True in validate decorator

@app.route(...)
@validate(response_by_alias=True)
def my_route():
    ...
    return MyModel(...)

Example app

For more complete examples see example application.

Configuration

The behaviour can be configured using flask's application config FLASK_PYDANTIC_VALIDATION_ERROR_STATUS_CODE - response status code after validation error (defaults to 400)

Contributing

Feature requests and pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

  • clone repository
    git clone https://github.com/bauerji/flask_pydantic.git
    cd flask_pydantic
  • create virtual environment and activate it
    python3 -m venv venv
    source venv/bin/activate
  • install development requirements
    python3 -m pip install -r requirements/test.pip
  • checkout new branch and make your desired changes (don't forget to update tests)
    git checkout -b <your_branch_name>
  • run tests
    python3 -m pytest
  • if tests fails on Black tests, make sure You have your code compliant with style of Black formatter
  • push your changes and create a pull request to master branch

TODOs:

  • header request parameters
  • cookie request parameters
Prometheus exporter for Starlette and FastAPI

starlette_exporter Prometheus exporter for Starlette and FastAPI. The middleware collects basic metrics: Counter: starlette_requests_total Histogram:

Steve Hillier 225 Jan 05, 2023
fastapi-admin2 is an upgraded fastapi-admin, that supports ORM dialects, true Dependency Injection and extendability

FastAPI2 Admin Introduction fastapi-admin2 is an upgraded fastapi-admin, that supports ORM dialects, true Dependency Injection and extendability. Now

Glib 14 Dec 05, 2022
A FastAPI Middleware of joerick/pyinstrument to check your service performance.

fastapi_profiler A FastAPI Middleware of joerick/pyinstrument to check your service performance. 📣 Info A FastAPI Middleware of pyinstrument to check

LeoSun 107 Jan 05, 2023
Town / City geolocations with FastAPI & Mongo

geolocations-api United Kingdom Town / City geolocations with FastAPI & Mongo Build container To build a custom image or extend the api run the follow

Joe Gasewicz 3 Jan 26, 2022
A request rate limiter for fastapi

fastapi-limiter Introduction FastAPI-Limiter is a rate limiting tool for fastapi routes. Requirements redis Install Just install from pypi pip insta

long2ice 200 Jan 08, 2023
Middleware for Starlette that allows you to store and access the context data of a request. Can be used with logging so logs automatically use request headers such as x-request-id or x-correlation-id.

starlette context Middleware for Starlette that allows you to store and access the context data of a request. Can be used with logging so logs automat

Tomasz Wójcik 300 Dec 26, 2022
FastAPI simple cache

FastAPI Cache Implements simple lightweight cache system as dependencies in FastAPI. Installation pip install fastapi-cache Usage example from fastapi

Ivan Sushkov 188 Dec 29, 2022
Code for my FastAPI tutorial

FastAPI tutorial Code for my video tutorial FastAPI tutorial What is FastAPI? FastAPI is a high-performant REST API framework for Python. It's built o

José Haro Peralta 9 Nov 15, 2022
LuSyringe is a documentation injection tool for your classes when using Fast API

LuSyringe LuSyringe is a documentation injection tool for your classes when using Fast API Benefits The main benefit is being able to separate your bu

Enzo Ferrari 2 Sep 06, 2021
The template for building scalable web APIs based on FastAPI, Tortoise ORM and other.

FastAPI and Tortoise ORM. Powerful but simple template for web APIs w/ FastAPI (as web framework) and Tortoise-ORM (for working via database without h

prostomarkeloff 95 Jan 08, 2023
A rate limiter for Starlette and FastAPI

SlowApi A rate limiting library for Starlette and FastAPI adapted from flask-limiter. Note: this is alpha quality code still, the API may change, and

Laurent Savaete 562 Jan 01, 2023
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

Triax Technologies 558 Jan 07, 2023
Adds GraphQL support to your Flask application.

Flask-GraphQL Adds GraphQL support to your Flask application. Usage Just use the GraphQLView view from flask_graphql from flask import Flask from flas

GraphQL Python 1.3k Dec 31, 2022
A minimum reproducible repository for embedding panel in FastAPI

FastAPI-Panel A minimum reproducible repository for embedding panel in FastAPI Follow either This Tutorial or These steps below ↓↓↓ Clone the reposito

Tyler Houssian 15 Sep 22, 2022
Cookiecutter API for creating Custom Skills for Azure Search using Python and Docker

cookiecutter-spacy-fastapi Python cookiecutter API for quick deployments of spaCy models with FastAPI Azure Search The API interface is compatible wit

Microsoft 379 Jan 03, 2023
Run your jupyter notebooks as a REST API endpoint. This isn't a jupyter server but rather just a way to run your notebooks as a REST API Endpoint.

Jupter Notebook REST API Run your jupyter notebooks as a REST API endpoint. This isn't a jupyter server but rather just a way to run your notebooks as

Invictify 54 Nov 04, 2022
Sample FastAPI project that uses async SQLAlchemy, SQLModel, Postgres, Alembic, and Docker.

FastAPI + SQLModel + Alembic Sample FastAPI project that uses async SQLAlchemy, SQLModel, Postgres, Alembic, and Docker. Want to learn how to build th

228 Jan 02, 2023
Lightning FastAPI

Lightning FastAPI Lightning FastAPI framework, provides boiler plates for FastAPI based on Django Framework Explaination / | │ manage.py │ README.

Rajesh Joshi 1 Oct 15, 2021
Github timeline htmx based web app rewritten from Common Lisp to Python FastAPI

python-fastapi-github-timeline Rewrite of Common Lisp htmx app _cl-github-timeline into Python using FastAPI. This project tries to prove, that with h

Jan Vlčinský 4 Mar 25, 2022
User authentication fastapi with python

user-authentication-fastapi Authentication API Development Setup environment You should create a virtual environment and activate it: virtualenv venv

Sabir Hussain 3 Mar 03, 2022