Model for recasing and repunctuating ASR transcripts

Overview

Recasing and punctuation model based on Bert

Benoit Favre 2021

This system converts a sequence of lowercase tokens without punctuation to a sequence of cased tokens with punctuation.

It is trained to predict both aspects at the token level in a multitask fashion, from fine-tuned BERT representations.

The model predicts the following recasing labels:

  • lower: keep lowercase
  • upper: convert to upper case
  • capitalize: set first letter as upper case
  • other: left as is

And the following punctuation labels:

  • o: no punctuation
  • period: .
  • comma: ,
  • question: ?
  • exclamation: !

Input tokens are batched as sequences of length 256 that are processed independently without overlap.

In training, batches containing less that 256 tokens are simulated by drawing uniformly a length and replacing all tokens and labels after that point with padding (called Cut-drop).

Changelong:

  • Fix generation when input is smaller than max length

Installation

Use your favourite method for installing Python requirements. For example:

python -mvenv env
. env/bin/activate
pip3 install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html

Prediction

Predict from raw text:

python recasepunc.py predict checkpoint/path.iteration < input.txt > output.txt

Models

  • French: fr-txt.large.19000 trained on 160M tokens from Common Crawl
    • Iterations: 19000
    • Batch size: 16
    • Max length: 256
    • Seed: 871253
    • Cut-drop probability: 0.1
    • Train loss: 0.021128975618630648
    • Valid loss: 0.015684964135289192
    • Recasing accuracy: 96.73
    • Punctuation accuracy: 95.02
      • All punctuation F-score: 67.79
      • Comma F-score: 67.94
      • Period F-score: 72.91
      • Question F-score: 57.57
      • Exclamation mark F-score: 15.78
    • Training data: First 100M words from Common Crawl

Training

Notes: You need to modify file names adequately. Training tensors are precomputed and loaded in CPU memory.

Stage 0: download text data

Stage 1: tokenize and normalize text with Moses tokenizer, and extract recasing and repunctuation labels

python recasepunc.py preprocess < input.txt > input.case+punc

Stage 2: sub-tokenize with Flaubert tokenizer, and generate pytorch tensors

python recasepunc.py tensorize input.case+punc input.case+punc.x input.case+punc.y

Stage 3: train model

python recasepunc.py train train.x train.y valid.x valid.y checkpoint/path

Stage 4: evaluate performance on a test set

python recasepunc.py eval checkpoint/path.iteration test.x test.y
Comments
  • Is it possible to customize for new language?

    Is it possible to customize for new language?

    Dear Benoit Favre,

    Your project is really important! Is it possible to customize for new language? If yes, could you tell short hints for it?

    Thank you in advance!

    opened by ican24 5
  • Can't get attribute 'WordpieceTokenizer'

    Can't get attribute 'WordpieceTokenizer'

    Hi thanks for your effort on developing recasepunc! I know that you can't provide help for models not trained by you, but maybe you have an idea what's going wrong here:

    I'm loading the model vosk-recasepunc-de-0.21 from https://alphacephei.com/vosk/models. When I do so, torch tells me that it can't find WordpieceTokenizer. Do you know why? Is the model incompatible?

    Punc predict path: C:\Users\admin\meety\vosk-recasepunc-de-0.21\checkpoint Traceback (most recent call last): File "main2.py", line 120, in t = transcriber() File "main2.py", line 32, in init self.casePuncPredictor = CasePuncPredictor(punc_predict_path, lang="de") File "C:\Users\admin\meety\recasepunc.py", line 273, in init loaded = torch.load(checkpoint_path, map_location=device if torch.cuda.is_available() else 'cpu') File "C:\Users\admin\Anaconda3\envs\meety\lib\site-packages\torch\serialization.py", line 607, in load return _load(opened_zipfile, map_location, pickle_module, **pickle_load_args) File "C:\Users\admin\Anaconda3\envs\meety\lib\site-packages\torch\serialization.py", line 882, in _load result = unpickler.load() File "C:\Users\admin\Anaconda3\envs\meety\lib\site-packages\torch\serialization.py", line 875, in find_class return super().find_class(mod_name, name) AttributeError: Can't get attribute 'WordpieceTokenizer' on <module 'main' from 'main2.py'>

    opened by padmalcom 4
  • Can't do inference

    Can't do inference

    Hello, I'm trying to use example.py on a french model (fr.22000 or fr-txt.large.19000) But I have this error: raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for Model: Unexpected key(s) in state_dict: "bert.position_ids". I also tried with the following command, same error in output. python recasepunc.py predict fr.22000 < toto.txt > output.txt Do you have any advice? Thanks

    opened by MatFrancois 3
  • Memory usage

    Memory usage

    Hi, on start punctuation app use about 9Gb RAM, but in one moment(in load model ). Then we need about 1.5GB. Can we reduce 9GB on start? maybe on start we check our model and it feature can be turn off?

    opened by gubri 1
  • Russian model doesn't work, while English does

    Russian model doesn't work, while English does

    When I use Russian model, it gives me this error:

    WARNING: reverting to cpu as cuda is not available
    Some weights of the model checkpoint at DeepPavlov/rubert-base-cased were not used when initializing BertModel: ['cls.seq_relationship.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.decoder.weight', 'cls.predictions.transform.dense.bias', 'cls.seq_relationship.weight', 'cls.predictions.transform.dense.weight', 'cls.predictions.bias', 'cls.predictions.transform.LayerNorm.weight']
    
     File "C:\pypy\rus\recasepunc.py", line 741, in <module>
        main(config, config.action, config.action_args)
      File "C:\pypy\rus\recasepunc.py", line 715, in main
        generate_predictions(config, *args)
      File "C:\pypy\rus\recasepunc.py", line 349, in generate_predictions
        for line in sys.stdin:
      File "C:\Users\Xenia\AppData\Local\Programs\Python\Python39\lib\codecs.py", line 322, in decode
        (result, consumed) = self._buffer_decode(data, self.errors, final)
    UnicodeDecodeError: 'utf-8' codec can't decode byte 0xef in position 0: invalid continuation byte
    
     File "C:\Users\Xenia\AppData\Local\Programs\Python\Python39\lib\site-packages\flask\app.py", line 1796, in dispatch_request
        return self.ensure_sync(self.view_functions[rule.endpoint])(**view_args)      
      File "C:\pypy\app.py", line 32, in process_audio
        cased = subprocess.check_output('python rus/recasepunc.py predict rus/checkpoint', shell=True, text=True, input=text)
      File "C:\Users\Xenia\AppData\Local\Programs\Python\Python39\lib\subprocess.py", 
    line 420, in check_output
        return run(*popenargs, stdout=PIPE, timeout=timeout, check=True,
      File "C:\Users\Xenia\AppData\Local\Programs\Python\Python39\lib\subprocess.py", 
    line 524, in run
        raise CalledProcessError(retcode, process.args,
    subprocess.CalledProcessError: Command 'python rus/recasepunc.py predict rus/checkpoint' returned non-zero exit status 1.
    

    Sorry for a long message, I'm not sure which of these messages are the most important. Should I use another version of transformers? I use transformers==4.16.2 and it works fine with English model.

    opened by xenia19 0
  • Export model to be Used in C++

    Export model to be Used in C++

    Is it possible that export model to something that can be used in C++ using libtorch?

    1. export existing model(checkpoint provided in this repo)
    2. export model after I train with my own data which option above possible, or both?
    opened by leohuang2013 0
  • RuntimeError when predicting with the french models

    RuntimeError when predicting with the french models

    I tried to use the french models (both fr.22000 and fr-txt.large.19000) on a very simple text:

    j'aime les fleurs les olives et la raclette

    When running python3 recasepunc.py predict fr.22000 < input.txt > output.txt (or with the other model), I get the following RuntimeError:

    Traceback (most recent call last):
      File "/home/mael/charly/recasepunc/recasepunc.py", line 733, in <module>
        main(config, config.action, config.action_args)
      File "/home/mael/charly/recasepunc/recasepunc.py", line 707, in main
        generate_predictions(config, *args)
      File "/home/mael/charly/recasepunc/recasepunc.py", line 336, in generate_predictions
        model.load_state_dict(loaded['model_state_dict'])
      File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1497, in load_state_dict
        raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
    RuntimeError: Error(s) in loading state_dict for Model:
    	Unexpected key(s) in state_dict: "bert.position_ids".
    

    I tried the same with the english model, and it worked perfectly. Looks like something is broken with the french ones?

    opened by maelchiotti 2
  • parameters like --dab_rate can't be set from cmd line bc they are bool

    parameters like --dab_rate can't be set from cmd line bc they are bool

    look at parameters below. They really became bool, i find this bug while debugging it. ''' if name == 'main': parser = argparse.ArgumentParser() parser.add_argument("action", help="train|eval|predict|tensorize|preprocess", type=str) ... parser.add_argument("--updates", help="number of training updates to perform", default=default_config.updates, type=bool) parser.add_argument("--period", help="validation period in updates", default=default_config.period, type=bool) parser.add_argument("--lr", help="learning rate", default=default_config.lr, type=bool) parser.add_argument("--dab-rate", help="drop at boundaries rate", default=default_config.dab_rate, type=bool) config = Config(**parser.parse_args().dict)

    main(config, config.action, config.action_args)
    

    '''

    opened by al-zatv 0
  • Cannot use trained model for validation or prediction

    Cannot use trained model for validation or prediction

    Hi, thank you for this repo! I'm trying to reproduce results for different language, so I'm using multilingual-bert fine-tuned to my language dataset. Everything goes well during preprocessing and training, the resuls are comparable with those for English and French (97-99% for case and punctuation).

    But when I try to use trained model, it gives very poor results even for sentences from training dataset. It works, sometimes it puts capital letters or dots, but it's rare and mostly model can't handle. Also when I try to evaluate model with command from the README (also tried it for already used validation sets, for instance with command python recasepunc.py eval bertugan_casepunc.24000 valid.case+punc.x valid.case+punc.y) it gives error:

    File "recasepunc.py", line 220, in batchify x = x[:(len(x) // max_length) * max_length].reshape(-1, max_length) TypeError: unhashable type: 'slice'

    Sorry for pointing to two different problems in one Issue, but I though maybe it can be one common mistake for both cases.

    opened by khusainovaidar 5
Releases(0.3)
Owner
Benoit Favre
Benoit Favre
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
NLP topic mdel LDA - Gathered from New York Times website

NLP topic mdel LDA - Gathered from New York Times website

1 Oct 14, 2021
Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021.

capbot-siic Repository to hold code for the cap-bot varient that is being presented at the SIIC Defence Hackathon 2021. Problem Inspiration A plethora

Aryan Kargwal 19 Feb 17, 2022
Blue Brain text mining toolbox for semantic search and structured information extraction

Blue Brain Search Source Code DOI Data & Models DOI Documentation Latest Release Python Versions License Build Status Static Typing Code Style Securit

The Blue Brain Project 29 Dec 01, 2022
Tool to add main subject to items on Wikidata using a WMFs CirrusSearch for named entity recognition or a manually supplied list of QIDs

ItemSubjector Tool made to add main subject statements to items based on the title using a home-brewed CirrusSearch-based Named Entity Recognition alg

Dennis Priskorn 9 Nov 17, 2022
A notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository

We provide a notebook that shows how to import the IITB English-Hindi Parallel Corpus from the HuggingFace datasets repository. The notebook also shows how to segment the corpus using BPE tokenizatio

Computation for Indian Language Technology (CFILT) 9 Oct 13, 2022
A text augmentation tool for named entity recognition.

neraug This python library helps you with augmenting text data for named entity recognition. Augmentation Example Reference from An Analysis of Simple

Hiroki Nakayama 48 Oct 11, 2022
A Facebook Messenger Chatbot using NLP

A Facebook Messenger Chatbot using NLP This project is about creating a messenger chatbot using basic NLP techniques and models like Logistic Regressi

6 Nov 20, 2022
A Transformer Implementation that is easy to understand and customizable.

Simple Transformer I've written a series of articles on the transformer architecture and language models on Medium. This repository contains an implem

Naoki Shibuya 4 Jan 20, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
基于GRU网络的句子判断程序/A program based on GRU network for judging sentences

SentencesJudger SentencesJudger 是一个基于GRU神经网络的句子判断程序,基本的功能是判断文章中的某一句话是否为一个优美的句子。 English 如何使用SentencesJudger 确认Python运行环境 安装pyTorch与LTP python3 -m pip

8 Mar 24, 2022
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
A CSRankings-like index for speech researchers

Speech Rankings This project mimics CSRankings to generate an ordered list of researchers in speech/spoken language processing along with their possib

Mutian He 19 Nov 26, 2022
Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense.

PythonTextObfuscator Takes a string and puts it through different languages in Google Translate a requested amount of times, returning nonsense. Requi

2 Aug 29, 2022
Code voor mijn Master project omtrent VideoBERT

Code voor masterproef Deze repository bevat de code voor het project van mijn masterproef omtrent VideoBERT. De code in deze repository is gebaseerd o

35 Oct 18, 2021
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
Neural network sequence labeling model

Sequence labeler This is a neural network sequence labeling system. Given a sequence of tokens, it will learn to assign labels to each token. Can be u

Marek Rei 250 Nov 03, 2022
FactSumm: Factual Consistency Scorer for Abstractive Summarization

FactSumm: Factual Consistency Scorer for Abstractive Summarization FactSumm is a toolkit that scores Factualy Consistency for Abstract Summarization W

devfon 83 Jan 09, 2023