Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

Overview

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection.

Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

Usually, object detection models trains to detect common classes of objects such as "car", "person", "cup", "bottle". But sometimes we need to detect more complex classes such as "lady in the red dress", "bottle of whiskey", or "where is my red cup" instead of "person", "bottle", "cup" respectively. One way to solve this problem is to train more complex detectors that can detect more complex classes, but we propose to use text-driven object detection that allows detecting any complex classes that can be described by natural language. This library is written to rank predicted bounding boxes using text/image descriptions of complex classes.

Install package

pip install pytorch_clip_bbox

Install the latest version

pip install --upgrade git+https://github.com/bes-dev/pytorch_clip_bbox.git

Features

  • The library supports multiple prompts (images or texts) as targets for filtering.
  • The library automatically detects the language of the input text, and multilingual translate it via google translate.
  • The library supports the original CLIP model by OpenAI and ruCLIP model by SberAI.
  • Simple integration with different object detection models.

Usage

We provide examples to integrate our library with different popular object detectors like: YOLOv5, MaskRCNN. Please, follow to examples to find more examples.

Simple example to integrate pytorch_clip_bbox with MaskRCNN model

$ pip install -r wheel cython opencv-python numpy torch torchvision pytorch_clip_bbox
args.confidence][-1] boxes = [[int(b) for b in box] for box in list(pred[0]['boxes'].detach().cpu().numpy())][:pred_threshold + 1] masks = (pred[0]['masks'] > 0.5).squeeze().detach().cpu().numpy()[:pred_threshold + 1] ranking = clip_bbox(image, boxes, top_k=args.top_k) for key in ranking.keys(): if key == "loss": continue for box in ranking[key]["ranking"]: mask, color = get_coloured_mask(masks[box["idx"]]) image = cv2.addWeighted(image, 1, mask, 0.5, 0) x1, y1, x2, y2 = box["rect"] cv2.rectangle(image, (x1, y1), (x2, y2), color, 6) cv2.rectangle(image, (x1, y1), (x2, y1-100), color, -1) cv2.putText(image, ranking[key]["src"], (x1 + 5, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 4, (0, 0, 0), thickness=5) if args.output_image is None: cv2.imshow("image", image) cv2.waitKey() else: cv2.imwrite(args.output_image, image) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-i", "--image", type=str, help="Input image.") parser.add_argument("--device", type=str, default="cuda:0", help="inference device.") parser.add_argument("--confidence", type=float, default=0.7, help="confidence threshold [MaskRCNN].") parser.add_argument("--text-prompt", type=str, default=None, help="Text prompt.") parser.add_argument("--image-prompt", type=str, default=None, help="Image prompt.") parser.add_argument("--clip-type", type=str, default="clip_vit_b32", help="Type of CLIP model [ruclip, clip_vit_b32, clip_vit_b16].") parser.add_argument("--top-k", type=int, default=1, help="top_k predictions will be returned.") parser.add_argument("--output-image", type=str, default=None, help="Output image name.") args = parser.parse_args() main(args)">
import argparse
import random
import cv2
import numpy as np
import torch
import torchvision.transforms as T
import torchvision
from pytorch_clip_bbox import ClipBBOX

def get_coloured_mask(mask):
    colours = [[0, 255, 0],[0, 0, 255],[255, 0, 0],[0, 255, 255],[255, 255, 0],[255, 0, 255],[80, 70, 180],[250, 80, 190],[245, 145, 50],[70, 150, 250],[50, 190, 190]]
    r = np.zeros_like(mask).astype(np.uint8)
    g = np.zeros_like(mask).astype(np.uint8)
    b = np.zeros_like(mask).astype(np.uint8)
    c = colours[random.randrange(0,10)]
    r[mask == 1], g[mask == 1], b[mask == 1] = c
    coloured_mask = np.stack([r, g, b], axis=2)
    return coloured_mask, c

def main(args):
    # build detector
    detector = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True).eval().to(args.device)
    clip_bbox = ClipBBOX(clip_type=args.clip_type).to(args.device)
    # add prompts
    if args.text_prompt is not None:
        for prompt in args.text_prompt.split(","):
            clip_bbox.add_prompt(text=prompt)
    if args.image_prompt is not None:
        image = cv2.cvtColor(cv2.imread(args.image_prompt), cv2.COLOR_BGR2RGB)
        image = torch.from_numpy(image).permute(2, 0, 1).unsqueeze(0)
        image = img / 255.0
        clip_bbox.add_prompt(image=image)
    image = cv2.imread(args.image)
    pred = detector([
        T.ToTensor()(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).to(args.device)
    ])
    pred_score = list(pred[0]['scores'].detach().cpu().numpy())
    pred_threshold = [pred_score.index(x) for x in pred_score if x > args.confidence][-1]
    boxes = [[int(b) for b in box] for box in list(pred[0]['boxes'].detach().cpu().numpy())][:pred_threshold + 1]
    masks = (pred[0]['masks'] > 0.5).squeeze().detach().cpu().numpy()[:pred_threshold + 1]
    ranking = clip_bbox(image, boxes, top_k=args.top_k)
    for key in ranking.keys():
        if key == "loss":
            continue
        for box in ranking[key]["ranking"]:
            mask, color = get_coloured_mask(masks[box["idx"]])
            image = cv2.addWeighted(image, 1, mask, 0.5, 0)
            x1, y1, x2, y2 = box["rect"]
            cv2.rectangle(image, (x1, y1), (x2, y2), color, 6)
            cv2.rectangle(image, (x1, y1), (x2, y1-100), color, -1)
            cv2.putText(image, ranking[key]["src"], (x1 + 5, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 4, (0, 0, 0), thickness=5)
    if args.output_image is None:
        cv2.imshow("image", image)
        cv2.waitKey()
    else:
        cv2.imwrite(args.output_image, image)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-i", "--image", type=str, help="Input image.")
    parser.add_argument("--device", type=str, default="cuda:0", help="inference device.")
    parser.add_argument("--confidence", type=float, default=0.7, help="confidence threshold [MaskRCNN].")
    parser.add_argument("--text-prompt", type=str, default=None, help="Text prompt.")
    parser.add_argument("--image-prompt", type=str, default=None, help="Image prompt.")
    parser.add_argument("--clip-type", type=str, default="clip_vit_b32", help="Type of CLIP model [ruclip, clip_vit_b32, clip_vit_b16].")
    parser.add_argument("--top-k", type=int, default=1, help="top_k predictions will be returned.")
    parser.add_argument("--output-image", type=str, default=None, help="Output image name.")
    args = parser.parse_args()
    main(args)
Owner
Sergei Belousov
Sergei Belousov
Loopy belief propagation for factor graphs on discrete variables, in JAX!

PGMax implements general factor graphs for discrete probabilistic graphical models (PGMs), and hardware-accelerated differentiable loopy belief propagation (LBP) in JAX.

Vicarious 62 Dec 23, 2022
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
A Python framework for conversational search

Chatty Goose Multi-stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting Installation Ma

Castorini 36 Oct 23, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP Russian Diffusio

AI Forever 232 Jan 04, 2023
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022
Tensorflow 2 Object Detection API kurulumu, GPU desteği, custom model hazırlama

Tensorflow 2 Object Detection API Bu tutorial, TensorFlow 2.x'in kararlı sürümü olan TensorFlow 2.3'ye yöneliktir. Bu, görüntülerde / videoda nesne a

46 Nov 20, 2022
Lane assist for ETS2, built with the ultra-fast-lane-detection model.

Euro-Truck-Simulator-2-Lane-Assist Lane assist for ETS2, built with the ultra-fast-lane-detection model. This project was made possible by the amazing

36 Jan 05, 2023
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Pyeventbus: a publish/subscribe event bus

pyeventbus pyeventbus is a publish/subscribe event bus for Python 2.7. simplifies the communication between python classes decouples event senders and

15 Apr 21, 2022
A Quick and Dirty Progressive Neural Network written in TensorFlow.

prog_nn .▄▄ · ▄· ▄▌ ▐ ▄ ▄▄▄· ▐ ▄ ▐█ ▀. ▐█▪██▌•█▌▐█▐█ ▄█▪ •█▌▐█ ▄▀▀▀█▄▐█▌▐█▪▐█▐▐▌ ██▀

SynPon 53 Dec 12, 2022
[LREC] MMChat: Multi-Modal Chat Dataset on Social Media

MMChat This repo contains the code and data for the LREC2022 paper MMChat: Multi-Modal Chat Dataset on Social Media. Dataset MMChat is a large-scale d

Silver 47 Jan 03, 2023
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Composing methods for ML training efficiency

MosaicML Composer contains a library of methods, and ways to compose them together for more efficient ML training.

MosaicML 2.8k Jan 08, 2023
Unofficial implementation of "Swin Transformer: Hierarchical Vision Transformer using Shifted Windows" (https://arxiv.org/abs/2103.14030)

Swin-Transformer-Tensorflow A direct translation of the official PyTorch implementation of "Swin Transformer: Hierarchical Vision Transformer using Sh

52 Dec 29, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022