PFFDTD is an open-source FDTD simulator for 3D room acoustics

Related tags

Deep Learningpffdtd
Overview

PFFDTD (pretty fast FDTD)

PFFDTD Screenshot

PFFDTD is an implementation of finite-difference time-domain (FDTD) simulation for 3D room acoustics, which includes an accompanying set of tools for simulation setup and processing of input/output signals. This software is intended for research use with powerful workstations or single-node remote servers with one or more Nvidia GPUs (using CUDA). PFFDTD was designed be "pretty fast" when run on GPUs – at least for FDTD simulations (the name is mostly intended as a pun).

Features

  • Multi-GPU-accelerated execution (with CUDA-enabled Nvidia GPUs)
  • Multi-threaded CPU execution
  • Python-based voxelization with CPU multiprocessing
  • Energy conservation to machine precision (numerical stability)
  • 7-point Cartesian and 13-point face-centered cubic (FCC) schemes
  • Frequency-dependent impedance boundaries
  • Works with non-watertight models
  • Stability safeguards for single-precision operation
  • A novel staircase boundary-surface-area correction scheme
  • 3D visualization

Installation

PFFDTD is designed to run on a Linux system (e.g. Ubuntu/Centos/Arch).

Installation (Python)

PFFDTD requires at least Python 3.9 to run, with additional required packages in pip_requirements.txt (for pip) or conda_pffdtd.yml (for conda). Conda (or miniconda) is recommended to get started with a PFFDTD-specific conda environment (see .yml file).

Installation (C/CUDA)

To compile, run 'make all' in the c_cuda folder.

You will need the CUDA toolkit, which you can install from this link.

You will also need HDF5 runtime and development files. In Ubuntu it suffices to install the libhdf5-dev package. For Centos install hdf5-devel. You can also link to the shared libraries which you can download here. Check the Makefile for environment variables to set.

Examples

There are two models provided with the code, which you can start to run from the four test scripts in this root folder.

Starting a project from scratch

To start a project (a model) from scratch, follow the provided examples, but essentially you will need to:

  1. Build a Sketchup model, set source/receiver locations in CSV files, and export to a JSON file.
  2. Fit absorption/impedance data to the passive boundary impedance model used [BHBS16]. Only a simple routine is provided to fit to 11 octave-band absorption coefficients (16Hz to 16kHz).
  3. Fill out a setup script to configure the model and simulation.
  4. Run your setup script, which in turns runs a 'voxelization' routine and sets up input/output grid positions and signals.
  5. Simulate your model from the exported .h5 data files with either the CPU-based Python code (which includes energy + visualization), or the C/CPU-based engine, or the C/CUDA/GPU-based engine.
  6. Post-process the output files from output .h5 files (if not just a run for visualization purposes).

The setup phase (signals + voxelization) can be carried out on a different machine to the simulation itself. This is useful if you're using GPUs on a remote server. There are GZIP compression options in the HDF5 exporting if network uploading is a bottleneck (you can also repack HDF5 files with 'h5repack'). Note, however, the voxelization phase is compute-intensive. It is best to have a many-core CPU server or workstation for this, or least a powerful laptop.

Sketchup

After building a Sketchup model of your room/scene, you can export it using the provided Sketchup plugin (.rbz file under ruby_SU folder), which exports the model and source/receiver positions (defined in separate CSV files – see examples) to a JSON file. Walls should be labelled with Sketchup Materials (which you can rename as necessary), and you should pay attention to the orientation of faces. Unlabelled materials are taken to be rigid. It is important to only label the 'active' side of a surface in order to save on computation time and memory in the FDTD scheme (non-rigid boundary nodes require extra state for internal ODEs). It is possible to have two-sided materials if needed, but both sides must be the same material. The model does not need to be closed (watertight) but it is good practice to have that. The exported model is expected to have at least four triangles. It only exports visible entities, and only Face entities (not Groups or Components – explode them first). Layers (Tags) are not taken into account.

The rest of the code works from the JSON export, so it's possible to export to this JSON format from other CAD software (in theory, but you would need to develop plugins for that). There is a Three.JS based viewer in a separate repository to double check the export (and orientation of faces).

Python

Follow the test script examples to set up your simulation. You need to choose input-signal types, link up materials to impedance data files (.h5 HDF5 format files), and choose your grid resolution. It helps to know some basics of Python/Numpy and FDTD here. When you run the script you will get a bunch of info related to the scheme, and it will give you an estimate of memory requirements for the simulation, and save some necessary data in .h5 files.

Simulation engine

Once you have your .h5 files ready in some folder, you can run the Python FDTD engine (pointing to the folder), or run the compiled C binaries from that folder. You will of course need Nvidia GPUs to run the CUDA version of the FDTD engine. The different engine implementations produce identical results (to within machine accuracy). Generally, the Python version is for visualization purposes and correctness checking (comparing outputs or calculating system energy), whereas the CUDA code is meant for larger simulations. Single-precision GPU execution will generally be the fastest (and cheapest) to run.

Post-processing

When the simulation has completed there will be a 'sim_outs.h5' file which has the raw signal read from grid locations. You can process these signals to get final output files, which do need some cleanup to remove, e.g., high frequencies with too much error (numerical dispersion) or to resample to a standard audio rate like 48kHz. There are also filters to apply air absorption to the output responses [Ham21a,Ham21b]. PFFDTD is only designed to output monoaural RIRs, but you can build arrays of outputs and feed those into frequency-domain microphone-array processing tools (e.g.,) for spatial audio, or encode Ambisonics directly in the time-domain [BPH19] (a similar approach can be used for directive sources [BAH19]).

Enhancements

This code largely implements algorithms that have already been published (see key reference list below) but it does feature some enhancements that have not appeared in articles that are worth mentioning below.

Operation in single precision

Instabilities can occur with FDTD simulations in finite-precision if you wait long enough, and that length will depend on the precision chosen and the particular simulation. You should not experience instabilities in double precision (indeed, the code conserves energy to machine precision). Single precision is generally faster and uses less memory, but operating in single precision can be give rise to instabilities (due to rounding errors) (see, e.g., [HBW14]).

If you choose to use single precision, this code has a few safeguards to mitigate/delay long-time instabilities. First, the eigenvalues of the underlying finite-difference Laplacian operator are perturbed to prevent DC-mode instabilities. In view of a matrix operator, off-diagonal elements are rounded towards zero (RTZ), while diagonal elements are shifted (on the order of machine epsilon) such that the finite-difference Laplacian operator remains negative semi-definite (a condition for stability). These DC-mode safeguards are only active in the single-precision CUDA version (they aren't needed in double precision). Secondly, the input signal to the scheme (e.g., an impulse) must be differentiated (using 'diff_source' option for sim_setup.py) to remove any DC input. At post-processing, the output will be integrated with a combined integrator/high-pass Butterworth filter [HPB20], which integrates while suppressing any leftover problematic DC modes.

Staircasing in FDTD

Staircase effects in regular-grid FDTD schemes is a known issue [BHBS16]. In essence, surfaces areas of boundaries are incorrectly estimated, leading to an overestimation of decay times. A novel correction scheme is provided in this code, based on the idea of an effective surface area. This concept is simple – it amounts to a weighting factor on the boundary-surface based on the inner product between the target boundary surface and a voxel boundary surface. Surface area errors before and after correction are tabulated in the voxelizer, and for refined grids the corrections brings errors down from as high as 50% to generally below 1% (going to zero in the limit of small cells). This helps provide more consistent estimates of decay times, and makes the simulation more robust to changes in grid resolution or scene rotations, while keeping the boundary updates efficient to implement and carry out on GPUs.

FCC scheme

For efficiency the 13-point FCC scheme is recommended over the 7-point Cartesian scheme, as it is typically requires ~5x less memory than the Cartesian scheme for a 1%-2% levels of dispersion error [HW13,Ham16]. However, the FCC scheme is tricky to implement due to its setting on a non-Cartesian grid. One solution to this has been compress the FCC grid like an accordion so it fits on a Cartesian grid, but there's a better solution implemented in this code. Namely, the FCC subgrid is folded onto itself across one dimension such that the stencil operation is uniform throughout (the old solution has some branching involved). Only the C and C/CUDA versions have this. The Python engine version uses a straightforward, yet redundant, Cartesian grid (aka using the CCP scheme).

Performance benchmarks

See (TODO:) for some performance benchmark results using single-node Nvidia GPUs servers, with GPU architectures ranging from Kepler to Ampere. This software has been tested with up to 30b nodes on the FCC grid (~250GB). For even larger, multi-node (MPI-based) FDTD simulations, see ParallelFDTD and [SCM18].

License

This software is released under the MIT license. See the LICENSE file for details. The Sketchup models found in the data/models folder are released under different licenses; see the README files in their corresponding folders.

Credits

The development of this code was not funded by any body or institution, but some credit can be given to grants ERC-StG-2011-279068-NESS and ERC-PoC-2016-WRAM, which funded many of the underlying (published) simulation algorithms developed within the Acoustics & Audio Group at the University of Edinburgh (see, e.g., list of references below). Some of the performance benchmarks of this code were carried out on GPUs (K80 / GTX1080Ti) paid for by those grants. Also, the Sketchup models provided were initially created by Heather Lai [LH20] and Nathaniel Fletcher [HWFB16] .

Citing this work

If PFFDTD contributes to an academic publication, please cite it as:

  @misc{hamilton2021pffdtd,
    title = {PFFDTD Software},
    author = {Brian Hamilton},
    note = {https://github.com/bsxfun/pffdtd},
    year = {2021}
  }

Third-party credits

PFFDTD relies on a number of open-source projects to work properly:

The above list is non-exhaustive. Use of the third-party software, libraries or code referred to above may be governed by separate licenses.

Some background references

[HW13] B. Hamilton and C. J. Webb. Room acoustics modelling using GPU-accelerated finite difference and finite volume methods on a face-centered cubic grid. In Proc. Digital Audio Effects (DAFx), pages 336–343, Maynooth, Ireland, September 2013.

[HBW14] B. Hamilton, S. Bilbao, and C. J. Webb. Revisiting implicit finite difference schemes for 3-D room acoustics simulations on GPU. In Proc. Digital Audio Effects (DAFx), pages 41–48, Erlangen, Germany, September 2014.

[BHBS16] S. Bilbao, B. Hamilton, J. Botts, and L. Savioja. Finite volume time domain room acoustics simulation under general impedance boundary conditions. IEEE/ACM Trans. Audio, Speech, Lang. Process., 24(1):161–173, 2016.

[Ham16] B. Hamilton. Finite Difference and Finite Volume Methods for Wave-based Modelling of Room Acoustics. Ph.D. thesis, University of Edinburgh, 2016.

[HWFB16] B. Hamilton, C. J. Webb, N. D. Fletcher, and S. Bilbao. Finite difference room acoustics simulation with general impedance boundaries and viscothermal losses in air: Parallel implementation on multiple GPUs. In Proc. Int. Symp. Music & Room Acoust., La Plata, Argentina, September 2016.

[SCM18] J. Saarelma, J. Califa, and R. Mehra. Challenges of distributed real-time finite-difference time-domain room acoustic simulation for auralization. In AES Int. Conf. Spatial Reproduction, July 2018.

[BPH19] S. Bilbao, A. Politis, and B. Hamilton. Local time-domain spherical harmonic spatial encoding for wave-based acoustic simulation. IEEE Signal Process. Lett., 26(4):617–621, 2019.

[BAH19] S. Bilbao, J. Ahrens, and B. Hamilton. Incorporating source directivity in wave-based virtual acoustics: Time-domain models and fitting to measured data. J. Acoust. Soc. Am., 146(4):2692–2703, 2019.

[LH20] H. Lai and B. Hamilton. Computer modeling of barrel-vaulted sanctuary exhibiting flutter echo with comparison to measurements. Acoustics, 2(1):87–109, 2020.

[HPB20] I. Henderson, A. Politis, and S. Bilbao. Filter design for real-time ambisonics encoding during wave-based acoustic simulations. In Proc. e-Forum Acusticum, Lyon, France, December 2020.

[Ham21a] B. Hamilton. Adding air attenuation to simulated room impulse responses: A modal approach. In Proc. Int. Conf. Immersive & 3D Audio, Bologna, Italy, September 2021.

[Ham21b] B. Hamilton. Air absorption filtering method based on approximate Green’s function for Stokes’ equation. In Proc. Digital Audio Effects (DAFx), Vienna, Austria, September 2021.

Owner
Brian Hamilton
Brian Hamilton
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
Text completion with Hugging Face and TensorFlow.js running on Node.js

Katana ML Text Completion 🤗 Description Runs with with Hugging Face DistilBERT and TensorFlow.js on Node.js distilbert-model - converter from Hugging

Katana ML 2 Nov 04, 2022
Einshape: DSL-based reshaping library for JAX and other frameworks.

Einshape: DSL-based reshaping library for JAX and other frameworks. The jnp.einsum op provides a DSL-based unified interface to matmul and tensordot o

DeepMind 62 Nov 30, 2022
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion

A Conditional Point Diffusion-Refinement Paradigm for 3D Point Cloud Completion This repo intends to release code for our work: Zhaoyang Lyu*, Zhifeng

Zhaoyang Lyu 68 Jan 03, 2023
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
PyG (PyTorch Geometric) - A library built upon PyTorch to easily write and train Graph Neural Networks (GNNs)

PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data.

PyG 16.5k Jan 08, 2023
Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

longlongman 170 Dec 01, 2022
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
The aim of the game, as in the original one, is to find a specific image from a group of different images of a person's face

GUESS WHO Main Links: [Github] [App] Related Links: [CLIP] [Celeba] The aim of the game, as in the original one, is to find a specific image from a gr

Arnau - DIMAI 3 Jan 04, 2022
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Feature extraction made simple with torchextractor

torchextractor: PyTorch Intermediate Feature Extraction Introduction Too many times some model definitions get remorselessly copy-pasted just because

Antoine Broyelle 89 Oct 31, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
EssentialMC2 Video Understanding

EssentialMC2 Introduction EssentialMC2 is a complete system to solve video understanding tasks including MHRL(representation learning), MECR2( relatio

Alibaba 106 Dec 11, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
A Survey on Deep Learning Technique for Video Segmentation

A Survey on Deep Learning Technique for Video Segmentation A Survey on Deep Learning Technique for Video Segmentation Wenguan Wang, Tianfei Zhou, Fati

Tianfei Zhou 112 Dec 12, 2022