PySpark Cheat Sheet - learn PySpark and develop apps faster

Overview

PySpark Cheat Sheet

This cheat sheet will help you learn PySpark and write PySpark apps faster. Everything in here is fully functional PySpark code you can run or adapt to your programs.

These snippets are licensed under the CC0 1.0 Universal License. That means you can freely copy and adapt these code snippets and you don't need to give attribution or include any notices.

These snippets use DataFrames loaded from various data sources:

  • "Auto MPG Data Set" available from the UCI Machine Learning Repository.
  • customer_spend.csv, a generated time series dataset.
  • date_examples.csv, a generated dataset with various date and time formats.

These snippets were tested against the Spark 3.1.2 API. This page was last updated 2021-09-03 14:20:31.

Make note of these helpful links:

If you find this guide helpful and want an easy way to run Spark, check out Oracle Cloud Infrastructure Data Flow, a fully-managed Spark service that lets you run Spark jobs at any scale with no administrative overhead. You can try Data Flow free.

Table of contents

Accessing Data Sources

Loading data stored in filesystems or databases, and saving it.

Load a DataFrame from CSV

# See https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameReader.html
# for a list of supported options.
df = spark.read.format("csv").option("header", True).load("data/auto-mpg.csv")
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Load a DataFrame from a Tab Separated Value (TSV) file

# See https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameReader.html
# for a list of supported options.
df = (
    spark.read.format("csv")
    .option("header", True)
    .option("sep", "\t")
    .load("data/auto-mpg.tsv")
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Save a DataFrame in CSV format

# See https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameWriter.html
# for a list of supported options.
df.write.csv("output.csv")

Load a DataFrame from Parquet

df = (
    spark.read.format("parquet").load("data/auto-mpg.parquet")
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Save a DataFrame in Parquet format

df.write.parquet("output.parquet")

Load a DataFrame from JSON Lines (jsonl) Formatted Data

# JSON Lines / jsonl format uses one JSON document per line.
# If you have data with mostly regular structure this is better than nesting it in an array.
# See https://jsonlines.org/
df = spark.read.json("data/weblog.jsonl")
# Code snippet result:
+----------+----------+--------+----------+----------+------+
|    client|   country| session| timestamp|       uri|  user|
+----------+----------+--------+----------+----------+------+
|{false,...|Bangladesh|55fa8213| 869196249|http://...|dde312|
|{true, ...|      Niue|2fcd4a83|1031238717|http://...|9d00b9|
|{true, ...|    Rwanda|013b996e| 628683372|http://...|1339d4|
|{false,...|   Austria|07e8a71a|1043628668|https:/...|966312|
|{false,...|    Belize|b23d05d8| 192738669|http://...|2af1e1|
|{false,...|Lao Peo...|d83dfbae|1066490444|http://...|844395|
|{false,...|French ...|e77dfaa2|1350920869|https:/...|  null|
|{false,...|Turks a...|56664269| 280986223|http://...|  null|
|{false,...|  Ethiopia|628d6059| 881914195|https:/...|8ab45a|
|{false,...|Saint K...|85f9120c|1065114708|https:/...|  null|
+----------+----------+--------+----------+----------+------+
only showing top 10 rows

Save a DataFrame into a Hive catalog table

df.write.mode("overwrite").saveAsTable("autompg")

Load a Hive catalog table into a DataFrame

# Load the table previously saved.
df = spark.table("autompg")
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Load a CSV file from Amazon S3

import configparser

config = configparser.ConfigParser()
config.read(os.path.expanduser("~/.aws/credentials"))
access_key = config.get("default", "aws_access_key_id")
secret_key = config.get("default", "aws_secret_access_key")

# Requires compatible hadoop-aws and aws-java-sdk-bundle JARs.
spark.conf.set("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.SimpleAWSCredentialsProvider")
spark.conf.set("fs.s3a.access.key", access_key)
spark.conf.set("fs.s3a.secret.key", secret_key)

df = spark.read.format("csv").option("header", True).load("s3a://cheatsheet111/auto-mpg.csv")

Load a CSV file from Oracle Cloud Infrastructure (OCI) Object Storage

import oci

oci_config = oci.config.from_file()
conf = spark.sparkContext.getConf()
conf.set("fs.oci.client.auth.tenantId", oci_config["tenancy"])
conf.set("fs.oci.client.auth.userId", oci_config["user"])
conf.set("fs.oci.client.auth.fingerprint", oci_config["fingerprint"])
conf.set("fs.oci.client.auth.pemfilepath", oci_config["key_file"])
conf.set(
    "fs.oci.client.hostname",
    "https://objectstorage.{0}.oraclecloud.com".format(oci_config["region"]),
)
PATH = "oci://
   
    @
    
     
      "
     
    
   
df = spark.read.format("csv").option("header", True).load(PATH)

Read an Oracle DB table into a DataFrame using a Wallet

# Key variables you need.
# Get the tnsname from tnsnames.ora.
# Wallet path should point to an extracted wallet file.
password = "my_password"
table = "source_table"
tnsname = "my_tns_name"
user = "ADMIN"
wallet_path = "/path/to/your/wallet"

properties = {
    "driver": "oracle.jdbc.driver.OracleDriver",
    "oracle.net.tns_admin": tnsname,
    "password": password,
    "user": user,
}
url = f"jdbc:oracle:thin:@{tnsname}?TNS_ADMIN={wallet_path}"
df = spark.read.jdbc(url=url, table=table, properties=properties)

Write a DataFrame to an Oracle DB table using a Wallet

# Key variables you need.
# Get the tnsname from tnsnames.ora.
# Wallet path should point to an extracted wallet file.
password = "my_password"
table = "target_table"
tnsname = "my_tns_name"
user = "ADMIN"
wallet_path = "/path/to/your/wallet"

properties = {
    "driver": "oracle.jdbc.driver.OracleDriver",
    "oracle.net.tns_admin": tnsname,
    "password": password,
    "user": user,
}
url = f"jdbc:oracle:thin:@{tnsname}?TNS_ADMIN={wallet_path}"

# Possible modes are "Append", "Overwrite", "Ignore", "Error"
df.write.jdbc(url=url, table=table, mode="Append", properties=properties)

Read a Postgres table into a DataFrame

# You need a compatible postgresql JDBC JAR.
pg_database = os.environ.get("PGDATABASE")
pg_host     = os.environ.get("PGHOST")
pg_password = os.environ.get("PGPASSWORD")
pg_user     = os.environ.get("PGUSER")
table = "test"

properties = {
    "driver": "org.postgresql.Driver",
    "user": pg_user,
    "password": pg_password,
}
url = f"jdbc:postgresql://{pg_host}:5432/{pg_database}"
df = spark.read.jdbc(url=url, table=table, properties=properties)

Write a DataFrame to a Postgres table

# You need a compatible postgresql JDBC JAR.
pg_database = os.environ.get("PGDATABASE")
pg_host     = os.environ.get("PGHOST")
pg_password = os.environ.get("PGPASSWORD")
pg_user     = os.environ.get("PGUSER")
table = "autompg"

properties = {
    "driver": "org.postgresql.Driver",
    "user": pg_user,
    "password": pg_password,
}
url = f"jdbc:postgresql://{pg_host}:5432/{pg_database}"
df.write.jdbc(url=url, table=table, mode="Append", properties=properties)

Data Handling Options

Special data handling scenarios.

Provide the schema when loading a DataFrame from CSV

# See https://spark.apache.org/docs/latest/api/python/_modules/pyspark/sql/types.html
# for a list of types.
from pyspark.sql.types import (
    DoubleType,
    IntegerType,
    StringType,
    StructField,
    StructType,
)

schema = StructType(
    [
        StructField("mpg", DoubleType(), True),
        StructField("cylinders", IntegerType(), True),
        StructField("displacement", DoubleType(), True),
        StructField("horsepower", DoubleType(), True),
        StructField("weight", DoubleType(), True),
        StructField("acceleration", DoubleType(), True),
        StructField("modelyear", IntegerType(), True),
        StructField("origin", IntegerType(), True),
        StructField("carname", StringType(), True),
    ]
)
df = (
    spark.read.format("csv")
    .option("header", "true")
    .schema(schema)
    .load("data/auto-mpg.csv")
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0|3504.0|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0|3693.0|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0|3436.0|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0|3433.0|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0|3449.0|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0|4341.0|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0|4354.0|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0|4312.0|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0|4425.0|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0|3850.0|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Save a DataFrame to CSV, overwriting existing data

df.write.mode("overwrite").csv("output.csv")

Save a DataFrame to CSV with a header

# See https://spark.apache.org/docs/latest/api/java/org/apache/spark/sql/DataFrameWriter.html
# for a list of supported options.
df.coalesce(1).write.csv("header.csv", header="true")

Save a DataFrame in a single CSV file

df.coalesce(1).write.csv("single.csv")

Save DataFrame as a dynamic partitioned table

spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")
df.write.mode("append").partitionBy("modelyear").saveAsTable("autompg_partitioned")

Overwrite specific partitions

spark.conf.set("spark.sql.sources.partitionOverwriteMode", "dynamic")
your_dataframe.write.mode("overwrite").insertInto("your_table")

Load a CSV file with a money column into a DataFrame

from pyspark.sql.functions import udf
from pyspark.sql.types import DecimalType
from decimal import Decimal

# Load the text file.
df = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/customer_spend.csv")
)

# Convert with a hardcoded custom UDF.
money_udf = udf(lambda x: Decimal(x[1:].replace(",", "")), DecimalType(8, 4))
money1 = df.withColumn("spend_dollars", money_udf(df.spend_dollars))

# Convert with the money_parser library (much safer).
from money_parser import price_str

money_convert = udf(
    lambda x: Decimal(price_str(x)) if x is not None else None,
    DecimalType(8, 4),
)
money2 = df.withColumn("spend_dollars", money_convert(df.spend_dollars))
# Code snippet result:
+----------+-----------+-------------+
|      date|customer_id|spend_dollars|
+----------+-----------+-------------+
|2020-01-31|          0|       0.0700|
|2020-01-31|          1|       0.9800|
|2020-01-31|          2|       0.0600|
|2020-01-31|          3|       0.6500|
|2020-01-31|          4|       0.5700|
|2020-02-29|          0|       0.1000|
|2020-02-29|          2|       4.4000|
|2020-02-29|          3|       0.3900|
|2020-02-29|          4|       2.1300|
|2020-02-29|          5|       0.8200|
+----------+-----------+-------------+
only showing top 10 rows

DataFrame Operations

Adding, removing and modifying DataFrame columns.

Add a new column to a DataFrame

from pyspark.sql.functions import upper, lower

df = df.withColumn("upper", upper(df.carname)).withColumn(
    "lower", lower(df.carname)
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+----------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|     upper|     lower|
+----+---------+------------+----------+------+------------+---------+------+----------+----------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|CHEVROL...|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|BUICK S...|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|PLYMOUT...|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|AMC REB...|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|FORD TO...|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|FORD GA...|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|CHEVROL...|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|PLYMOUT...|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|PONTIAC...|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|AMC AMB...|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+----------+----------+
only showing top 10 rows

Modify a DataFrame column

from pyspark.sql.functions import col, concat, lit

df = df.withColumn("modelyear", concat(lit("19"), col("modelyear")))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|     1970|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|     1970|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|     1970|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|     1970|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|     1970|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|     1970|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|     1970|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|     1970|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|     1970|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|     1970|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Add a column with multiple conditions

from pyspark.sql.functions import col, when

df = df.withColumn(
    "mpg_class",
    when(col("mpg") <= 20, "low")
    .when(col("mpg") <= 30, "mid")
    .when(col("mpg") <= 40, "high")
    .otherwise("very high"),
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+---------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|mpg_class|
+----+---------+------------+----------+------+------------+---------+------+----------+---------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|      low|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|      low|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|      low|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|      low|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|      low|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|      low|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|      low|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|      low|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|      low|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|      low|
+----+---------+------------+----------+------+------------+---------+------+----------+---------+
only showing top 10 rows

Add a constant column

from pyspark.sql.functions import lit

df = df.withColumn("one", lit(1))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+---+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|one|
+----+---------+------------+----------+------+------------+---------+------+----------+---+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|  1|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|  1|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|  1|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|  1|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|  1|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|  1|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|  1|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|  1|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|  1|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|  1|
+----+---------+------------+----------+------+------------+---------+------+----------+---+
only showing top 10 rows

Concatenate columns

from pyspark.sql.functions import concat, col, lit

df = df.withColumn(
    "concatenated", concat(col("cylinders"), lit("_"), col("mpg"))
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+------------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|concatenated|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|      8_18.0|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|      8_15.0|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|      8_18.0|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|      8_16.0|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|      8_17.0|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|      8_15.0|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|      8_14.0|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|      8_14.0|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|      8_14.0|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|      8_15.0|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+
only showing top 10 rows

Drop a column

df = df.drop("horsepower")
# Code snippet result:
+----+---------+------------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+------+------------+---------+------+----------+
|18.0|        8|       307.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+------+------------+---------+------+----------+
only showing top 10 rows

Change a column name

df = df.withColumnRenamed("horsepower", "horses")
# Code snippet result:
+----+---------+------------+------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horses|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+------+------+------------+---------+------+----------+
|18.0|        8|       307.0| 130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0| 165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0| 150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0| 150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0| 140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0| 198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0| 220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0| 215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0| 225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0| 190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+------+------+------------+---------+------+----------+
only showing top 10 rows

Change multiple column names

df = df.withColumnRenamed("horsepower", "horses").withColumnRenamed(
    "modelyear", "year"
)
# Code snippet result:
+----+---------+------------+------+------+------------+----+------+----------+
| mpg|cylinders|displacement|horses|weight|acceleration|year|origin|   carname|
+----+---------+------------+------+------+------------+----+------+----------+
|18.0|        8|       307.0| 130.0| 3504.|        12.0|  70|     1|chevrol...|
|15.0|        8|       350.0| 165.0| 3693.|        11.5|  70|     1|buick s...|
|18.0|        8|       318.0| 150.0| 3436.|        11.0|  70|     1|plymout...|
|16.0|        8|       304.0| 150.0| 3433.|        12.0|  70|     1|amc reb...|
|17.0|        8|       302.0| 140.0| 3449.|        10.5|  70|     1|ford to...|
|15.0|        8|       429.0| 198.0| 4341.|        10.0|  70|     1|ford ga...|
|14.0|        8|       454.0| 220.0| 4354.|         9.0|  70|     1|chevrol...|
|14.0|        8|       440.0| 215.0| 4312.|         8.5|  70|     1|plymout...|
|14.0|        8|       455.0| 225.0| 4425.|        10.0|  70|     1|pontiac...|
|15.0|        8|       390.0| 190.0| 3850.|         8.5|  70|     1|amc amb...|
+----+---------+------------+------+------+------------+----+------+----------+
only showing top 10 rows

Convert a DataFrame column to a Python list

names = df.select("carname").rdd.flatMap(lambda x: x).collect()
# Code snippet result:
['chevrolet chevelle malibu', 'buick skylark 320', 'plymouth satellite', 'amc rebel sst', 'ford torino', 'ford galaxie 500', 'chevrolet impala', 'plymouth fury iii', 'pontiac catalina', 'amc ambassador dpl']

Convert a scalar query to a Python value

average = df.agg(dict(mpg="avg")).first()[0]
print(average)
# Code snippet result:
23.514572864321615

Consume a DataFrame row-wise as Python dictionaries

first_three = df.limit(3)
for row in first_three.collect():
    my_dict = row.asDict()
# Code snippet result:

{'mpg': '18.0', 'cylinders': '8', 'displacement': '307.0', 'horsepower': '130.0', 'weight': '3504.', 'acceleration': '12.0', 'modelyear': '70', 'origin': '1', 'carname': 'chevrolet chevelle malibu'}
{'mpg': '15.0', 'cylinders': '8', 'displacement': '350.0', 'horsepower': '165.0', 'weight': '3693.', 'acceleration': '11.5', 'modelyear': '70', 'origin': '1', 'carname': 'buick skylark 320'}
{'mpg': '18.0', 'cylinders': '8', 'displacement': '318.0', 'horsepower': '150.0', 'weight': '3436.', 'acceleration': '11.0', 'modelyear': '70', 'origin': '1', 'carname': 'plymouth satellite'}

Select particular columns from a DataFrame

df = df.select(["mpg", "cylinders", "displacement"])
# Code snippet result:
+----+---------+------------+
| mpg|cylinders|displacement|
+----+---------+------------+
|18.0|        8|       307.0|
|15.0|        8|       350.0|
|18.0|        8|       318.0|
|16.0|        8|       304.0|
|17.0|        8|       302.0|
|15.0|        8|       429.0|
|14.0|        8|       454.0|
|14.0|        8|       440.0|
|14.0|        8|       455.0|
|15.0|        8|       390.0|
+----+---------+------------+
only showing top 10 rows

Create an empty dataframe with a specified schema

from pyspark.sql.types import StructField, StructType, LongType, StringType

schema = StructType(
    [
        StructField("my_id", LongType(), True),
        StructField("my_string", StringType(), True),
    ]
)
df = spark.createDataFrame([], schema)
# Code snippet result:
+-----+---------+
|my_id|my_string|
+-----+---------+
+-----+---------+

Create a constant dataframe

import datetime
from pyspark.sql.types import (
    StructField,
    StructType,
    LongType,
    StringType,
    TimestampType,
)

schema = StructType(
    [
        StructField("my_id", LongType(), True),
        StructField("my_string", StringType(), True),
        StructField("my_timestamp", TimestampType(), True),
    ]
)
df = spark.createDataFrame(
    [
        (1, "foo", datetime.datetime.strptime("2021-01-01", "%Y-%m-%d")),
        (2, "bar", datetime.datetime.strptime("2021-01-02", "%Y-%m-%d")),
    ],
    schema,
)
# Code snippet result:
+-----+---------+------------+
|my_id|my_string|my_timestamp|
+-----+---------+------------+
|    1|      foo|  2021-01...|
|    2|      bar|  2021-01...|
+-----+---------+------------+

Convert String to Double

from pyspark.sql.functions import col

df = df.withColumn("horsepower", col("horsepower").cast("double"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Convert String to Integer

from pyspark.sql.functions import col

df = df.withColumn("horsepower", col("horsepower").cast("int"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|       130| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|       165| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|       150| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|       150| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|       140| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|       198| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|       220| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|       215| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|       225| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|       190| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Get the size of a DataFrame

print("{} rows".format(df.count()))
print("{} columns".format(len(df.columns)))
# Code snippet result:
398 rows
9 columns

Get a DataFrame's number of partitions

print("{} partition(s)".format(df.rdd.getNumPartitions()))
# Code snippet result:
1 partition(s)

Get data types of a DataFrame's columns

print(df.dtypes)
# Code snippet result:
[('mpg', 'string'), ('cylinders', 'string'), ('displacement', 'string'), ('horsepower', 'string'), ('weight', 'string'), ('acceleration', 'string'), ('modelyear', 'string'), ('origin', 'string'), ('carname', 'string')]

Convert an RDD to Data Frame

from pyspark.sql import Row

row = Row("val")
df = rdd.map(row).toDF()
# Code snippet result:
+----------+
|       val|
+----------+
|mpg,cyl...|
|18.0,8,...|
|15.0,8,...|
|18.0,8,...|
|16.0,8,...|
|17.0,8,...|
|15.0,8,...|
|14.0,8,...|
|14.0,8,...|
|14.0,8,...|
+----------+
only showing top 10 rows

Print the contents of an RDD

print(rdd.take(10))
# Code snippet result:
['mpg,cylinders,displacement,horsepower,weight,acceleration,modelyear,origin,carname', '18.0,8,307.0,130.0,3504.,12.0,70,1,"chevrolet chevelle malibu"', '15.0,8,350.0,165.0,3693.,11.5,70,1,"buick skylark 320"', '18.0,8,318.0,150.0,3436.,11.0,70,1,"plymouth satellite"', '16.0,8,304.0,150.0,3433.,12.0,70,1,"amc rebel sst"', '17.0,8,302.0,140.0,3449.,10.5,70,1,"ford torino"', '15.0,8,429.0,198.0,4341.,10.0,70,1,"ford galaxie 500"', '14.0,8,454.0,220.0,4354.,9.0,70,1,"chevrolet impala"', '14.0,8,440.0,215.0,4312.,8.5,70,1,"plymouth fury iii"', '14.0,8,455.0,225.0,4425.,10.0,70,1,"pontiac catalina"']

Print the contents of a DataFrame

df.show(10)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Process each row of a DataFrame

import os

def foreach_function(row):
    if row.horsepower is not None:
        os.system("echo " + row.horsepower)

df.foreach(foreach_function)

DataFrame Map example

def map_function(row):
    if row.horsepower is not None:
        return [float(row.horsepower) * 10]
    else:
        return [None]

df = df.rdd.map(map_function).toDF()
# Code snippet result:
+------+
|    _1|
+------+
|1300.0|
|1650.0|
|1500.0|
|1500.0|
|1400.0|
|1980.0|
|2200.0|
|2150.0|
|2250.0|
|1900.0|
+------+
only showing top 10 rows

DataFrame Flatmap example

from pyspark.sql.types import Row

def flatmap_function(row):
    if row.cylinders is not None:
        return list(range(int(row.cylinders)))
    else:
        return [None]

rdd = df.rdd.flatMap(flatmap_function)
row = Row("val")
df = rdd.map(row).toDF()
# Code snippet result:
+---+
|val|
+---+
|  0|
|  1|
|  2|
|  3|
|  4|
|  5|
|  6|
|  7|
|  0|
|  1|
+---+
only showing top 10 rows

Create a custom UDF

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+------------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|manufacturer|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|   chevrolet|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|       buick|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|    plymouth|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|         amc|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|        ford|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|        ford|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|   chevrolet|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|    plymouth|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|     pontiac|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|         amc|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+
only showing top 10 rows

Transforming Data

Data conversions and other modifications.

Extract data from a string using a regular expression

from pyspark.sql.functions import col, regexp_extract

group = 0
df = (
    df.withColumn(
        "identifier", regexp_extract(col("carname"), "(\S?\d+)", group)
    )
    .drop("acceleration")
    .drop("cylinders")
    .drop("displacement")
    .drop("modelyear")
    .drop("mpg")
    .drop("origin")
    .drop("horsepower")
    .drop("weight")
)
# Code snippet result:
+----------+----------+
|   carname|identifier|
+----------+----------+
|chevrol...|          |
|buick s...|       320|
|plymout...|          |
|amc reb...|          |
|ford to...|          |
|ford ga...|       500|
|chevrol...|          |
|plymout...|          |
|pontiac...|          |
|amc amb...|          |
+----------+----------+
only showing top 10 rows

Fill NULL values in specific columns

df.fillna({"horsepower": 0})
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Fill NULL values with column average

from pyspark.sql.functions import avg

df.fillna({"horsepower": df.agg(avg("horsepower")).first()[0]})
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Fill NULL values with group average

from pyspark.sql.functions import coalesce

unmodified_columns = df.columns
unmodified_columns.remove("horsepower")
manufacturer_avg = df.groupBy("cylinders").agg({"horsepower": "avg"})
df = df.join(manufacturer_avg, "cylinders").select(
    *unmodified_columns,
    coalesce("horsepower", "avg(horsepower)").alias("horsepower"),
)
# Code snippet result:
+----+---------+------------+------+------------+---------+------+----------+----------+
| mpg|cylinders|displacement|weight|acceleration|modelyear|origin|   carname|horsepower|
+----+---------+------------+------+------------+---------+------+----------+----------+
|18.0|        8|       307.0| 3504.|        12.0|       70|     1|chevrol...|     130.0|
|15.0|        8|       350.0| 3693.|        11.5|       70|     1|buick s...|     165.0|
|18.0|        8|       318.0| 3436.|        11.0|       70|     1|plymout...|     150.0|
|16.0|        8|       304.0| 3433.|        12.0|       70|     1|amc reb...|     150.0|
|17.0|        8|       302.0| 3449.|        10.5|       70|     1|ford to...|     140.0|
|15.0|        8|       429.0| 4341.|        10.0|       70|     1|ford ga...|     198.0|
|14.0|        8|       454.0| 4354.|         9.0|       70|     1|chevrol...|     220.0|
|14.0|        8|       440.0| 4312.|         8.5|       70|     1|plymout...|     215.0|
|14.0|        8|       455.0| 4425.|        10.0|       70|     1|pontiac...|     225.0|
|15.0|        8|       390.0| 3850.|         8.5|       70|     1|amc amb...|     190.0|
+----+---------+------------+------+------------+---------+------+----------+----------+
only showing top 10 rows

Unpack a DataFrame's JSON column to a new DataFrame

from pyspark.sql.functions import col, json_tuple

source = spark.sparkContext.parallelize(
    [["1", '{ "a" : 10, "b" : 11 }'], ["2", '{ "a" : 20, "b" : 21 }']]
).toDF(["id", "json"])
df = source.select("id", json_tuple(col("json"), "a", "b"))
# Code snippet result:
+---+---+---+
| id| c0| c1|
+---+---+---+
|  1| 10| 11|
|  2| 20| 21|
+---+---+---+

Query a JSON column

15) ) ">
from pyspark.sql.functions import col, json_tuple

source = spark.sparkContext.parallelize(
    [["1", '{ "a" : 10, "b" : 11 }'], ["2", '{ "a" : 20, "b" : 21 }']]
).toDF(["id", "json"])
filtered = (
    source.select("id", json_tuple(col("json"), "a", "b"))
    .withColumnRenamed("c0", "a")
    .withColumnRenamed("c1", "b")
    .where(col("b") > 15)
)
# Code snippet result:
+---+---+---+
| id|  a|  b|
+---+---+---+
|  2| 20| 21|
+---+---+---+

Sorting and Searching

Filtering, sorting, removing duplicates and more.

Filter a column using a condition

"30") ">
from pyspark.sql.functions import col

filtered = df.filter(col("mpg") > "30")
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
| 9.0|        8|       304.0|     193.0| 4732.|        18.5|       70|     1|  hi 1200d|
|30.0|        4|       79.00|     70.00| 2074.|        19.5|       71|     2|peugeot...|
|30.0|        4|       88.00|     76.00| 2065.|        14.5|       71|     2| fiat 124b|
|31.0|        4|       71.00|     65.00| 1773.|        19.0|       71|     3|toyota ...|
|35.0|        4|       72.00|     69.00| 1613.|        18.0|       71|     3|datsun ...|
|31.0|        4|       79.00|     67.00| 1950.|        19.0|       74|     3|datsun ...|
|32.0|        4|       71.00|     65.00| 1836.|        21.0|       74|     3|toyota ...|
|31.0|        4|       76.00|     52.00| 1649.|        16.5|       74|     3|toyota ...|
|32.0|        4|       83.00|     61.00| 2003.|        19.0|       74|     3|datsun 710|
|31.0|        4|       79.00|     67.00| 2000.|        16.0|       74|     2| fiat x1.9|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Filter based on a specific column value

from pyspark.sql.functions import col

filtered = df.where(col("cylinders") == "8")
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Filter based on an IN list

from pyspark.sql.functions import col

filtered = df.where(col("cylinders").isin(["4", "6"]))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|24.0|        4|       113.0|     95.00| 2372.|        15.0|       70|     3|toyota ...|
|22.0|        6|       198.0|     95.00| 2833.|        15.5|       70|     1|plymout...|
|18.0|        6|       199.0|     97.00| 2774.|        15.5|       70|     1|amc hornet|
|21.0|        6|       200.0|     85.00| 2587.|        16.0|       70|     1|ford ma...|
|27.0|        4|       97.00|     88.00| 2130.|        14.5|       70|     3|datsun ...|
|26.0|        4|       97.00|     46.00| 1835.|        20.5|       70|     2|volkswa...|
|25.0|        4|       110.0|     87.00| 2672.|        17.5|       70|     2|peugeot...|
|24.0|        4|       107.0|     90.00| 2430.|        14.5|       70|     2|audi 10...|
|25.0|        4|       104.0|     95.00| 2375.|        17.5|       70|     2|  saab 99e|
|26.0|        4|       121.0|     113.0| 2234.|        12.5|       70|     2|  bmw 2002|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Filter based on a NOT IN list

from pyspark.sql.functions import col

filtered = df.where(~col("cylinders").isin(["4", "6"]))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Filter values based on keys in another DataFrame

from pyspark.sql.functions import col

# Our DataFrame of keys to exclude.
exclude_keys = df.select(
    (col("modelyear") + 1).alias("adjusted_year")
).distinct()

# The anti join returns only keys with no matches.
filtered = df.join(
    exclude_keys, how="left_anti", on=df.modelyear == exclude_keys.adjusted_year
)

# Alternatively we can register a temporary table and use a SQL expression.
exclude_keys.registerTempTable("exclude_keys")
filtered = df.filter(
    "modelyear not in ( select adjusted_year from exclude_keys )"
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|      8.0|       307.0|     130.0|3504.0|        12.0|       70|     1|chevrol...|
|15.0|      8.0|       350.0|     165.0|3693.0|        11.5|       70|     1|buick s...|
|18.0|      8.0|       318.0|     150.0|3436.0|        11.0|       70|     1|plymout...|
|16.0|      8.0|       304.0|     150.0|3433.0|        12.0|       70|     1|amc reb...|
|17.0|      8.0|       302.0|     140.0|3449.0|        10.5|       70|     1|ford to...|
|15.0|      8.0|       429.0|     198.0|4341.0|        10.0|       70|     1|ford ga...|
|14.0|      8.0|       454.0|     220.0|4354.0|         9.0|       70|     1|chevrol...|
|14.0|      8.0|       440.0|     215.0|4312.0|         8.5|       70|     1|plymout...|
|14.0|      8.0|       455.0|     225.0|4425.0|        10.0|       70|     1|pontiac...|
|15.0|      8.0|       390.0|     190.0|3850.0|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Get Dataframe rows that match a substring

filtered = df.where(df.carname.contains("custom"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|16.0|        6|       225.0|     105.0| 3439.|        15.5|       71|     1|plymout...|
|13.0|        8|       350.0|     155.0| 4502.|        13.5|       72|     1|buick l...|
|14.0|        8|       318.0|     150.0| 4077.|        14.0|       72|     1|plymout...|
|15.0|        8|       318.0|     150.0| 3777.|        12.5|       73|     1|dodge c...|
|12.0|        8|       455.0|     225.0| 4951.|        11.0|       73|     1|buick e...|
|16.0|        6|       250.0|     100.0| 3278.|        18.0|       73|     1|chevrol...|
|13.0|        8|       360.0|     170.0| 4654.|        13.0|       73|     1|plymout...|
|15.0|        8|       318.0|     150.0| 3399.|        11.0|       73|     1|dodge d...|
|14.0|        8|       318.0|     150.0| 4457.|        13.5|       74|     1|dodge c...|
|19.0|        6|       225.0|     95.00| 3264.|        16.0|       75|     1|plymout...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Filter a Dataframe based on a custom substring search

from pyspark.sql.functions import col

filtered = df.where(col("carname").like("%custom%"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|16.0|        6|       225.0|     105.0| 3439.|        15.5|       71|     1|plymout...|
|13.0|        8|       350.0|     155.0| 4502.|        13.5|       72|     1|buick l...|
|14.0|        8|       318.0|     150.0| 4077.|        14.0|       72|     1|plymout...|
|15.0|        8|       318.0|     150.0| 3777.|        12.5|       73|     1|dodge c...|
|12.0|        8|       455.0|     225.0| 4951.|        11.0|       73|     1|buick e...|
|16.0|        6|       250.0|     100.0| 3278.|        18.0|       73|     1|chevrol...|
|13.0|        8|       360.0|     170.0| 4654.|        13.0|       73|     1|plymout...|
|15.0|        8|       318.0|     150.0| 3399.|        11.0|       73|     1|dodge d...|
|14.0|        8|       318.0|     150.0| 4457.|        13.5|       74|     1|dodge c...|
|19.0|        6|       225.0|     95.00| 3264.|        16.0|       75|     1|plymout...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Filter based on a column's length

from pyspark.sql.functions import col, length

filtered = df.where(length(col("carname")) < 12)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|18.0|        6|       199.0|     97.00| 2774.|        15.5|       70|     1|amc hornet|
|25.0|        4|       110.0|     87.00| 2672.|        17.5|       70|     2|peugeot...|
|24.0|        4|       107.0|     90.00| 2430.|        14.5|       70|     2|audi 10...|
|25.0|        4|       104.0|     95.00| 2375.|        17.5|       70|     2|  saab 99e|
|26.0|        4|       121.0|     113.0| 2234.|        12.5|       70|     2|  bmw 2002|
|21.0|        6|       199.0|     90.00| 2648.|        15.0|       70|     1|amc gre...|
|10.0|        8|       360.0|     215.0| 4615.|        14.0|       70|     1| ford f250|
|10.0|        8|       307.0|     200.0| 4376.|        15.0|       70|     1| chevy c20|
|11.0|        8|       318.0|     210.0| 4382.|        13.5|       70|     1|dodge d200|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Multiple filter conditions

"30") | (col("acceleration") < "10")) and_conditions = df.filter((col("mpg") > "30") & (col("acceleration") < "13")) ">
from pyspark.sql.functions import col

or_conditions = df.filter((col("mpg") > "30") | (col("acceleration") < "10"))
and_conditions = df.filter((col("mpg") > "30") & (col("acceleration") < "13"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|32.7|        6|       168.0|     132.0| 2910.|        11.4|       80|     3|datsun ...|
|30.0|        4|       135.0|     84.00| 2385.|        12.9|       81|     1|plymout...|
|32.0|        4|       135.0|     84.00| 2295.|        11.6|       82|     1|dodge r...|
+----+---------+------------+----------+------+------------+---------+------+----------+

Sort DataFrame by a column

from pyspark.sql.functions import col

ascending = df.orderBy("carname")
descending = df.orderBy(col("carname").desc())
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|31.9|        4|       89.00|     71.00| 1925.|        14.0|       79|     2|vw rabb...|
|44.3|        4|       90.00|     48.00| 2085.|        21.7|       80|     2|vw rabb...|
|29.0|        4|       90.00|     70.00| 1937.|        14.2|       76|     2| vw rabbit|
|41.5|        4|       98.00|     76.00| 2144.|        14.7|       80|     2| vw rabbit|
|44.0|        4|       97.00|     52.00| 2130.|        24.6|       82|     2| vw pickup|
|43.4|        4|       90.00|     48.00| 2335.|        23.7|       80|     2|vw dash...|
|30.7|        6|       145.0|     76.00| 3160.|        19.6|       81|     2|volvo d...|
|17.0|        6|       163.0|     125.0| 3140.|        13.6|       78|     2|volvo 2...|
|20.0|        4|       130.0|     102.0| 3150.|        15.7|       76|     2| volvo 245|
|22.0|        4|       121.0|     98.00| 2945.|        14.5|       75|     2|volvo 2...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Take the first N rows of a DataFrame

n = 10
reduced = df.limit(n)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+

Get distinct values of a column

distinct = df.select("cylinders").distinct()
# Code snippet result:
+---------+
|cylinders|
+---------+
|        3|
|        8|
|        5|
|        6|
|        4|
+---------+

Remove duplicates

filtered = df.dropDuplicates(["carname"])
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|24.0|        4|       107.0|     90.00| 2430.|        14.5|       70|     2|audi 10...|
|32.0|        4|       135.0|     84.00| 2295.|        11.6|       82|     1|dodge r...|
|24.5|        4|       151.0|     88.00| 2740.|        16.0|       77|     1|pontiac...|
|13.0|        8|       350.0|     145.0| 3988.|        13.0|       73|     1|chevrol...|
|15.0|        8|       350.0|     145.0| 4082.|        13.0|       73|     1|chevrol...|
|16.0|        8|       351.0|     149.0| 4335.|        14.5|       77|     1|ford th...|
|32.9|        4|       119.0|     100.0| 2615.|        14.8|       81|     3|datsun ...|
|34.1|        4|       86.00|     65.00| 1975.|        15.2|       79|     3|maxda g...|
|22.0|        4|       121.0|     98.00| 2945.|        14.5|       75|     2|volvo 2...|
|18.0|        6|       232.0|     100.0| 3288.|        15.5|       71|     1|amc mat...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Grouping

Group DataFrame data by key to perform aggregates like counting, sums, averages, etc.

count(*) on a particular column

from pyspark.sql.functions import desc

# No sorting.
grouped1 = df.groupBy("cylinders").count()

# With sorting.
grouped2 = df.groupBy("cylinders").count().orderBy(desc("count"))
# Code snippet result:
+---------+-----+
|cylinders|count|
+---------+-----+
|        4|  204|
|        8|  103|
|        6|   84|
|        3|    4|
|        5|    3|
+---------+-----+

Group and sort

from pyspark.sql.functions import avg, desc

grouped = (
    df.groupBy("cylinders")
    .agg(avg("horsepower").alias("avg_horsepower"))
    .orderBy(desc("avg_horsepower"))
)
# Code snippet result:
+---------+--------------+
|cylinders|avg_horsepower|
+---------+--------------+
|        8|    158.300...|
|        6|    101.506...|
|        3|         99.25|
|        5|    82.3333...|
|        4|    78.2814...|
+---------+--------------+

Filter groups based on an aggregate value, equivalent to SQL HAVING clause

100) ) ">
from pyspark.sql.functions import col, desc

grouped = (
    df.groupBy("cylinders")
    .count()
    .orderBy(desc("count"))
    .filter(col("count") > 100)
)
# Code snippet result:
+---------+-----+
|cylinders|count|
+---------+-----+
|        4|  204|
|        8|  103|
+---------+-----+

Group by multiple columns

from pyspark.sql.functions import avg, desc

grouped = (
    df.groupBy(["modelyear", "cylinders"])
    .agg(avg("horsepower").alias("avg_horsepower"))
    .orderBy(desc("avg_horsepower"))
)
# Code snippet result:
+---------+---------+--------------+
|modelyear|cylinders|avg_horsepower|
+---------+---------+--------------+
|       70|        8|    183.666...|
|       73|        8|         170.0|
|       71|        8|    166.857...|
|       72|        8|    159.692...|
|       77|        8|       152.375|
|       76|        8|    146.333...|
|       74|        8|         146.0|
|       75|        8|         142.0|
|       78|        8|         135.5|
|       79|        8|         131.9|
+---------+---------+--------------+
only showing top 10 rows

Aggregate multiple columns

expressions = dict(horsepower="avg", weight="max", displacement="max")
grouped = df.groupBy("modelyear").agg(expressions)
# Code snippet result:
+---------+---------------+-----------+-----------------+
|modelyear|avg(horsepower)|max(weight)|max(displacement)|
+---------+---------------+-----------+-----------------+
|       73|        130.475|      4997.|            98.00|
|       71|     107.037...|      5140.|            98.00|
|       70|     147.827...|      4732.|            97.00|
|       75|     101.066...|      4668.|            97.00|
|       78|     99.6944...|      4080.|            98.00|
|       77|     105.071...|      4335.|            98.00|
|       82|     81.4666...|      3035.|            98.00|
|       81|     81.0357...|      3725.|            98.00|
|       79|     101.206...|      4360.|            98.00|
|       72|     120.178...|      4633.|            98.00|
+---------+---------------+-----------+-----------------+
only showing top 10 rows

Aggregate multiple columns with custom orderings

from pyspark.sql.functions import asc, desc_nulls_last

expressions = dict(horsepower="avg", weight="max", displacement="max")
orderings = [
    desc_nulls_last("max(displacement)"),
    desc_nulls_last("avg(horsepower)"),
    asc("max(weight)"),
]
grouped = df.groupBy("modelyear").agg(expressions).orderBy(*orderings)
# Code snippet result:
+---------+---------------+-----------+-----------------+
|modelyear|avg(horsepower)|max(weight)|max(displacement)|
+---------+---------------+-----------+-----------------+
|       73|        130.475|      4997.|            98.00|
|       72|     120.178...|      4633.|            98.00|
|       71|     107.037...|      5140.|            98.00|
|       77|     105.071...|      4335.|            98.00|
|       79|     101.206...|      4360.|            98.00|
|       76|     101.117...|      4380.|            98.00|
|       78|     99.6944...|      4080.|            98.00|
|       74|     94.2307...|      4699.|            98.00|
|       82|     81.4666...|      3035.|            98.00|
|       81|     81.0357...|      3725.|            98.00|
+---------+---------------+-----------+-----------------+
only showing top 10 rows

Get the maximum of a column

from pyspark.sql.functions import col, max

grouped = df.select(max(col("horsepower")).alias("max_horsepower"))
# Code snippet result:
+--------------+
|max_horsepower|
+--------------+
|         98.00|
+--------------+

Sum a list of columns

exprs = {x: "sum" for x in ("weight", "cylinders", "mpg")}
summed = df.agg(exprs)
# Code snippet result:
+----------+-----------+--------------+
|  sum(mpg)|sum(weight)|sum(cylinders)|
+----------+-----------+--------------+
|9358.80...|  1182229.0|        2171.0|
+----------+-----------+--------------+

Sum a column

from pyspark.sql.functions import sum

grouped = df.groupBy("cylinders").agg(sum("weight").alias("total_weight"))
# Code snippet result:
+---------+------------+
|cylinders|total_weight|
+---------+------------+
|        3|      9594.0|
|        8|    423816.0|
|        5|      9310.0|
|        6|    268651.0|
|        4|    470858.0|
+---------+------------+

Aggregate all numeric columns

numerics = set(["decimal", "double", "float", "integer", "long", "short"])
exprs = {x[0]: "sum" for x in df.dtypes if x[1] in numerics}
summed = df.agg(exprs)
# Code snippet result:
+-----------+-----------------+--------------+----------+---------------+-----------------+
|sum(weight)|sum(acceleration)|sum(cylinders)|  sum(mpg)|sum(horsepower)|sum(displacement)|
+-----------+-----------------+--------------+----------+---------------+-----------------+
|  1182229.0|       6196.09...|        2171.0|9358.80...|        40952.0|          76983.5|
+-----------+-----------------+--------------+----------+---------------+-----------------+

Count unique after grouping

from pyspark.sql.functions import countDistinct

grouped = df.groupBy("cylinders").agg(countDistinct("mpg"))
# Code snippet result:
+---------+----------+
|cylinders|count(mpg)|
+---------+----------+
|        3|         4|
|        8|        27|
|        5|         3|
|        6|        38|
|        4|        87|
+---------+----------+

Count distinct values on all columns

from pyspark.sql.functions import countDistinct

grouped = df.agg(*(countDistinct(c) for c in df.columns))
# Code snippet result:
+----------+----------------+-------------------+-----------------+-------------+-------------------+----------------+-------------+--------------+
|count(mpg)|count(cylinders)|count(displacement)|count(horsepower)|count(weight)|count(acceleration)|count(modelyear)|count(origin)|count(carname)|
+----------+----------------+-------------------+-----------------+-------------+-------------------+----------------+-------------+--------------+
|       129|               5|                 82|               93|          351|                 96|              13|            3|           305|
+----------+----------------+-------------------+-----------------+-------------+-------------------+----------------+-------------+--------------+

Group by then filter on the count

100) ">
from pyspark.sql.functions import col

grouped = df.groupBy("cylinders").count().where(col("count") > 100)
# Code snippet result:
+---------+-----+
|cylinders|count|
+---------+-----+
|        8|  103|
|        4|  204|
+---------+-----+

Find the top N per row group (use N=1 for maximum)

from pyspark.sql.functions import col, row_number
from pyspark.sql.window import Window

# To get the maximum per group, set n=1.
n = 5
w = Window().partitionBy("cylinders").orderBy(col("horsepower").desc())
result = (
    df.withColumn("horsepower", col("horsepower").cast("double"))
    .withColumn("rn", row_number().over(w))
    .where(col("rn") <= n)
    .select("*")
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+---+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname| rn|
+----+---------+------------+----------+------+------------+---------+------+----------+---+
|21.5|        3|       80.00|     110.0| 2720.|        13.5|       77|     3|mazda rx-4|  1|
|23.7|        3|       70.00|     100.0| 2420.|        12.5|       80|     3|mazda r...|  2|
|19.0|        3|       70.00|      97.0| 2330.|        13.5|       72|     3|mazda r...|  3|
|18.0|        3|       70.00|      90.0| 2124.|        13.5|       73|     3| maxda rx3|  4|
|16.0|        8|       400.0|     230.0| 4278.|        9.50|       73|     1|pontiac...|  1|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|  2|
|14.0|        8|       455.0|     225.0| 3086.|        10.0|       70|     1|buick e...|  3|
|12.0|        8|       455.0|     225.0| 4951.|        11.0|       73|     1|buick e...|  4|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|  5|
|20.3|        5|       131.0|     103.0| 2830.|        15.9|       78|     2| audi 5000|  1|
+----+---------+------------+----------+------+------------+---------+------+----------+---+
only showing top 10 rows

Group key/values into a list

from pyspark.sql.functions import col, collect_list

collected = df.groupBy("cylinders").agg(
    collect_list(col("carname")).alias("models")
)
# Code snippet result:
+---------+----------+
|cylinders|    models|
+---------+----------+
|        3|[mazda ...|
|        8|[chevro...|
|        5|[audi 5...|
|        6|[plymou...|
|        4|[toyota...|
+---------+----------+

Compute a histogram

from pyspark.sql.functions import col

# Target column must be numeric.
df = df.withColumn("horsepower", col("horsepower").cast("double"))

# N is the number of bins.
N = 11
histogram = df.select("horsepower").rdd.flatMap(lambda x: x).histogram(N)
print(histogram)
# Code snippet result:
([46.0, 62.72727272727273, 79.45454545454545, 96.18181818181819, 112.9090909090909, 129.63636363636363, 146.36363636363637, 163.0909090909091, 179.8181818181818, 196.54545454545453, 213.27272727272725, 230.0], [23, 89, 102, 65, 17, 27, 32, 15, 9, 5, 8])

Compute global percentiles

from pyspark.sql.functions import col, ntile
from pyspark.sql.window import Window

w = Window().orderBy(col("mpg").desc())
result = df.withColumn("ntile4", ntile(4).over(w))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|ntile4|
+----+---------+------------+----------+------+------------+---------+------+----------+------+
|46.6|      4.0|        86.0|      65.0|2110.0|        17.9|       80|     3| mazda glc|     1|
|44.6|      4.0|        91.0|      67.0|1850.0|        13.8|       80|     3|honda c...|     1|
|44.3|      4.0|        90.0|      48.0|2085.0|        21.7|       80|     2|vw rabb...|     1|
|44.0|      4.0|        97.0|      52.0|2130.0|        24.6|       82|     2| vw pickup|     1|
|43.4|      4.0|        90.0|      48.0|2335.0|        23.7|       80|     2|vw dash...|     1|
|43.1|      4.0|        90.0|      48.0|1985.0|        21.5|       78|     2|volkswa...|     1|
|41.5|      4.0|        98.0|      76.0|2144.0|        14.7|       80|     2| vw rabbit|     1|
|40.9|      4.0|        85.0|      null|1835.0|        17.3|       80|     2|renault...|     1|
|40.8|      4.0|        85.0|      65.0|2110.0|        19.2|       80|     3|datsun 210|     1|
|39.4|      4.0|        85.0|      70.0|2070.0|        18.6|       78|     3|datsun ...|     1|
+----+---------+------------+----------+------+------------+---------+------+----------+------+
only showing top 10 rows

Compute percentiles within a partition

from pyspark.sql.functions import col, ntile
from pyspark.sql.window import Window

w = Window().partitionBy("cylinders").orderBy(col("mpg").desc())
result = df.withColumn("ntile4", ntile(4).over(w))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|ntile4|
+----+---------+------------+----------+------+------------+---------+------+----------+------+
|26.6|      8.0|       350.0|     105.0|3725.0|        19.0|       81|     1|oldsmob...|     1|
|23.9|      8.0|       260.0|      90.0|3420.0|        22.2|       79|     1|oldsmob...|     1|
|23.0|      8.0|       350.0|     125.0|3900.0|        17.4|       79|     1|cadilla...|     1|
|20.2|      8.0|       302.0|     139.0|3570.0|        12.8|       78|     1|mercury...|     1|
|20.0|      8.0|       262.0|     110.0|3221.0|        13.5|       75|     1|chevrol...|     1|
|19.9|      8.0|       260.0|     110.0|3365.0|        15.5|       78|     1|oldsmob...|     1|
|19.4|      8.0|       318.0|     140.0|3735.0|        13.2|       78|     1|dodge d...|     1|
|19.2|      8.0|       305.0|     145.0|3425.0|        13.2|       78|     1|chevrol...|     1|
|19.2|      8.0|       267.0|     125.0|3605.0|        15.0|       79|     1|chevrol...|     1|
|18.5|      8.0|       360.0|     150.0|3940.0|        13.0|       79|     1|chrysle...|     1|
+----+---------+------------+----------+------+------------+---------+------+----------+------+
only showing top 10 rows

Compute percentiles after aggregating

from pyspark.sql.functions import col, ntile
from pyspark.sql.window import Window

grouped = df.groupBy("modelyear").count()
w = Window().orderBy(col("count").desc())
result = grouped.withColumn("ntile4", ntile(4).over(w))
# Code snippet result:
+---------+-----+------+
|modelyear|count|ntile4|
+---------+-----+------+
|       73|   40|     1|
|       78|   36|     1|
|       76|   34|     1|
|       82|   31|     1|
|       75|   30|     2|
|       81|   29|     2|
|       80|   29|     2|
|       70|   29|     3|
|       79|   29|     3|
|       72|   28|     3|
+---------+-----+------+
only showing top 10 rows

Filter rows with values below a target percentile

lit(target_percentile)) ">
from pyspark.sql.functions import col, lit
import pyspark.sql.functions as F

target_percentile = df.agg(
    F.expr("percentile(mpg, 0.9)").alias("target_percentile")
).first()[0]
result = df.filter(col("mpg") > lit(target_percentile))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|35.0|      4.0|        72.0|      69.0|1613.0|        18.0|       71|     3|datsun ...|
|36.0|      4.0|        79.0|      58.0|1825.0|        18.6|       77|     2|renault...|
|43.1|      4.0|        90.0|      48.0|1985.0|        21.5|       78|     2|volkswa...|
|36.1|      4.0|        98.0|      66.0|1800.0|        14.4|       78|     1|ford fi...|
|39.4|      4.0|        85.0|      70.0|2070.0|        18.6|       78|     3|datsun ...|
|36.1|      4.0|        91.0|      60.0|1800.0|        16.4|       78|     3|honda c...|
|35.7|      4.0|        98.0|      80.0|1915.0|        14.4|       79|     1|dodge c...|
|34.5|      4.0|       105.0|      70.0|2150.0|        14.9|       79|     1|plymout...|
|37.3|      4.0|        91.0|      69.0|2130.0|        14.7|       79|     2|fiat st...|
|41.5|      4.0|        98.0|      76.0|2144.0|        14.7|       80|     2| vw rabbit|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Aggregate and rollup

79) grouped = ( subset.rollup("modelyear", "cylinders") .agg( avg("horsepower").alias("avg_horsepower"), count("modelyear").alias("count"), ) .orderBy(desc("modelyear"), desc("cylinders")) ) ">
from pyspark.sql.functions import avg, col, count, desc

subset = df.filter(col("modelyear") > 79)
grouped = (
    subset.rollup("modelyear", "cylinders")
    .agg(
        avg("horsepower").alias("avg_horsepower"),
        count("modelyear").alias("count"),
    )
    .orderBy(desc("modelyear"), desc("cylinders"))
)
# Code snippet result:
+---------+---------+--------------+-----+
|modelyear|cylinders|avg_horsepower|count|
+---------+---------+--------------+-----+
|       82|      6.0|    102.333...|    3|
|       82|      4.0|    79.1481...|   28|
|       82|     null|    81.4666...|   31|
|       81|      8.0|         105.0|    1|
|       81|      6.0|    100.714...|    7|
|       81|      4.0|         72.95|   21|
|       81|     null|    81.0357...|   29|
|       80|      6.0|         111.0|    2|
|       80|      5.0|          67.0|    1|
|       80|      4.0|    74.0434...|   25|
|       80|      3.0|         100.0|    1|
|       80|     null|    77.4814...|   29|
|     null|     null|    80.0588...|   89|
+---------+---------+--------------+-----+

Aggregate and cube

79) grouped = ( subset.cube("modelyear", "cylinders") .agg( avg("horsepower").alias("avg_horsepower"), count("modelyear").alias("count"), ) .orderBy(desc("modelyear"), desc("cylinders")) ) ">
from pyspark.sql.functions import avg, col, count, desc

subset = df.filter(col("modelyear") > 79)
grouped = (
    subset.cube("modelyear", "cylinders")
    .agg(
        avg("horsepower").alias("avg_horsepower"),
        count("modelyear").alias("count"),
    )
    .orderBy(desc("modelyear"), desc("cylinders"))
)
# Code snippet result:
+---------+---------+--------------+-----+
|modelyear|cylinders|avg_horsepower|count|
+---------+---------+--------------+-----+
|       82|      6.0|    102.333...|    3|
|       82|      4.0|    79.1481...|   28|
|       82|     null|    81.4666...|   31|
|       81|      8.0|         105.0|    1|
|       81|      6.0|    100.714...|    7|
|       81|      4.0|         72.95|   21|
|       81|     null|    81.0357...|   29|
|       80|      6.0|         111.0|    2|
|       80|      5.0|          67.0|    1|
|       80|      4.0|    74.0434...|   25|
|       80|      3.0|         100.0|    1|
|       80|     null|    77.4814...|   29|
|     null|      8.0|         105.0|    1|
|     null|      6.0|    102.833...|   12|
|     null|      5.0|          67.0|    1|
|     null|      4.0|          75.7|   74|
|     null|      3.0|         100.0|    1|
|     null|     null|    80.0588...|   89|
+---------+---------+--------------+-----+

Joining DataFrames

Joining and stacking DataFrames.

Join two DataFrames by column name

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Load a list of manufacturer / country pairs.
countries = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/manufacturers.csv")
)

# Add a manufacturers column, to join with the manufacturers list.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))

# The actual join.
joined = df.join(countries, "manufacturer")
# Code snippet result:
+------------+----+---------+------------+----------+------+------------+---------+------+----------+-------+
|manufacturer| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|country|
+------------+----+---------+------------+----------+------+------------+---------+------+----------+-------+
|   chevrolet|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|     us|
|       buick|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|     us|
|    plymouth|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|     us|
|         amc|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|     us|
|        ford|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|     us|
|        ford|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|     us|
|   chevrolet|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|     us|
|    plymouth|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|     us|
|     pontiac|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|     us|
|         amc|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|     us|
+------------+----+---------+------------+----------+------+------------+---------+------+----------+-------+
only showing top 10 rows

Join two DataFrames with an expression

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Load a list of manufacturer / country pairs.
countries = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/manufacturers.csv")
)

# Add a manufacturers column, to join with the manufacturers list.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))

# The actual join.
joined = df.join(countries, df.manufacturer == countries.manufacturer)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+------------+------------+-------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|manufacturer|manufacturer|country|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+------------+-------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|   chevrolet|   chevrolet|     us|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|       buick|       buick|     us|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|    plymouth|    plymouth|     us|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|         amc|         amc|     us|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|        ford|        ford|     us|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|        ford|        ford|     us|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|   chevrolet|   chevrolet|     us|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|    plymouth|    plymouth|     us|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|     pontiac|     pontiac|     us|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|         amc|         amc|     us|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+------------+-------+
only showing top 10 rows

Multiple join conditions

from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Load a list of manufacturer / country pairs.
countries = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/manufacturers.csv")
)

# Add a manufacturers column, to join with the manufacturers list.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))

# The actual join.
joined = df.join(
    countries,
    (df.manufacturer == countries.manufacturer)
    | (df.mpg == countries.manufacturer),
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+------------+------------+-------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|manufacturer|manufacturer|country|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+------------+-------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|   chevrolet|   chevrolet|     us|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|       buick|       buick|     us|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|    plymouth|    plymouth|     us|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|         amc|         amc|     us|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|        ford|        ford|     us|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|        ford|        ford|     us|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|   chevrolet|   chevrolet|     us|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|    plymouth|    plymouth|     us|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|     pontiac|     pontiac|     us|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|         amc|         amc|     us|
+----+---------+------------+----------+------+------------+---------+------+----------+------------+------------+-------+
only showing top 10 rows

Various Spark join types

# Inner join on one column.
joined = df.join(df, "carname")

# Left (outer) join.
joined = df.join(df, "carname", "left")

# Left anti (not in) join.
joined = df.join(df, "carname", "left_anti")

# Right (outer) join.
joined = df.join(df, "carname", "right")

# Full join.
joined = df.join(df, "carname", "full")

# Cross join.
joined = df.crossJoin(df)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Concatenate two DataFrames

df1 = spark.read.format("csv").option("header", True).load("data/part1.csv")
df2 = spark.read.format("csv").option("header", True).load("data/part2.csv")
df = df1.union(df2)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Load multiple files into a single DataFrame

# Approach 1: Use a list.
df = (
    spark.read.format("csv")
    .option("header", True)
    .load(["data/part1.csv", "data/part2.csv"])
)

# Approach 2: Use a wildcard.
df = spark.read.format("csv").option("header", True).load("data/part*.csv")
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|20.0|        6|       225.0|     100.0| 3651.|        17.7|       76|     1|dodge a...|
|18.0|        6|       250.0|     78.00| 3574.|        21.0|       76|     1|ford gr...|
|18.5|        6|       250.0|     110.0| 3645.|        16.2|       76|     1|pontiac...|
|17.5|        6|       258.0|     95.00| 3193.|        17.8|       76|     1|amc pac...|
|29.5|        4|       97.00|     71.00| 1825.|        12.2|       76|     2|volkswa...|
|32.0|        4|       85.00|     70.00| 1990.|        17.0|       76|     3|datsun ...|
|28.0|        4|       97.00|     75.00| 2155.|        16.4|       76|     3|toyota ...|
|26.5|        4|       140.0|     72.00| 2565.|        13.6|       76|     1|ford pinto|
|20.0|        4|       130.0|     102.0| 3150.|        15.7|       76|     2| volvo 245|
|13.0|        8|       318.0|     150.0| 3940.|        13.2|       76|     1|plymout...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Subtract DataFrames

from pyspark.sql.functions import col

reduced = df.subtract(df.where(col("mpg") < "25"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|33.5|        4|       85.00|     70.00| 1945.|        16.8|       77|     3|datsun ...|
|37.0|        4|       91.00|     68.00| 2025.|        18.2|       82|     3|mazda g...|
|26.0|        4|       116.0|     75.00| 2246.|        14.0|       74|     2|fiat 12...|
|31.0|        4|       112.0|     85.00| 2575.|        16.2|       82|     1|pontiac...|
|29.0|        4|       90.00|     70.00| 1937.|        14.0|       75|     2|volkswa...|
|37.2|        4|       86.00|     65.00| 2019.|        16.4|       80|     3|datsun 310|
|26.0|        4|       98.00|     90.00| 2265.|        15.5|       73|     2|fiat 12...|
|40.9|        4|       85.00|      null| 1835.|        17.3|       80|     2|renault...|
|35.1|        4|       81.00|     60.00| 1760.|        16.1|       81|     3|honda c...|
|32.8|        4|       78.00|     52.00| 1985.|        19.4|       78|     3|mazda g...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

File Processing

Loading File Metadata and Processing Files.

Load Local File Details into a DataFrame

from pyspark.sql.types import (
    StructField,
    StructType,
    LongType,
    StringType,
    TimestampType,
)
import datetime
import glob
import os

# Simple: Use glob and only file names.
files = [[x] for x in glob.glob("/etc/*")]
df = spark.createDataFrame(files)

# Advanced: Use os.walk and extended attributes.
target_path = "/etc"
entries = []
walker = os.walk(target_path)
for root, dirs, files in walker:
    for file in files:
        full_path = os.path.join(root, file)
        try:
            stat_info = os.stat(full_path)
            entries.append(
                [
                    file,
                    full_path,
                    stat_info.st_size,
                    datetime.datetime.fromtimestamp(stat_info.st_mtime),
                ]
            )
        except:
            pass
schema = StructType(
    [
        StructField("file", StringType(), False),
        StructField("path", StringType(), False),
        StructField("size", LongType(), False),
        StructField("mtime", TimestampType(), False),
    ]
)
df = spark.createDataFrame(entries, schema)
# Code snippet result:
+----------+----------+-----+----------+
|      file|      path| size|     mtime|
+----------+----------+-----+----------+
|  manpaths|/etc/ma...|   36|2020-06...|
| rc.common|/etc/rc...| 1560|2020-06...|
|auto_ma...|/etc/au...|  195|2020-08...|
| csh.login|/etc/cs...|  121|2020-06...|
|syslog....|/etc/sy...|  133|2020-12...|
|krb5.ke...|/etc/kr...| 1946|2021-08...|
|    nanorc|/etc/na...|   11|2020-06...|
|csh.logout|/etc/cs...|   39|2020-06...|
|aliases.db|/etc/al...|16384|2020-06...|
|bashrc_...|/etc/ba...| 9192|2020-06...|
+----------+----------+-----+----------+
only showing top 10 rows

Load Files from Oracle Cloud Infrastructure into a DataFrame

from pyspark.sql.types import (
    StructField,
    StructType,
    LongType,
    StringType,
    TimestampType,
)

# Requires an object_store_client object.
# See https://oracle-cloud-infrastructure-python-sdk.readthedocs.io/en/latest/api/object_storage/client/oci.object_storage.ObjectStorageClient.html
input_bucket = "oow_2019_dataflow_lab"
raw_inputs = object_store_client.list_objects(
    object_store_client.get_namespace().data,
    input_bucket,
    fields="size,md5,timeModified",
)
files = [
    [x.name, x.size, x.time_modified, x.md5] for x in raw_inputs.data.objects
]
schema = StructType(
    [
        StructField("name", StringType(), False),
        StructField("size", LongType(), True),
        StructField("modified", TimestampType(), True),
        StructField("md5", StringType(), True),
    ]
)
df = spark.createDataFrame(files, schema)
# Code snippet result:
+----------+--------+----------+----------+
|      name|    size|  modified|       md5|
+----------+--------+----------+----------+
|sharedc...|      58|2021-01...|TY0HU7h...|
|usercon...|32006919|2021-01...|igX2QgX...|
|usercon...|    4307|2021-01...|NYXxVUc...|
|usercon...|71183217|2021-01...|HlBkZ/l...|
|usercon...|16906538|2021-01...|K8qMDXT...|
|usercon...|    4774|2021-01...|cXnXiq3...|
|usercon...|     303|2021-01...|5wgh5PJ...|
|usercon...|    1634|2021-01...|3Nqbf6K...|
|usercon...|    2611|2021-01...|B8XLwDe...|
|usercon...| 2017366|2021-01...|XyKoSOA...|
+----------+--------+----------+----------+
only showing top 10 rows

Transform Many Images using Pillow

from PIL import Image
import glob

def resize_an_image(row):
    width, height = 128, 128
    file_name = row._1
    new_name = file_name.replace(".png", ".resized.png")
    img = Image.open(file_name)
    img = img.resize((width, height), Image.ANTIALIAS)
    img.save(new_name)

files = [[x] for x in glob.glob("data/resize_image?.png")]
df = spark.createDataFrame(files)
df.foreach(resize_an_image)

Handling Missing Data

Dealing with NULLs and NaNs in DataFrames.

Filter rows with None or Null values

from pyspark.sql.functions import col

filtered = df.where(col("horsepower").isNull())
filtered = df.where(col("horsepower").isNotNull())
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Drop rows with Null values

# thresh controls the number of nulls before the row gets dropped.
# subset controls the columns to consider.
df = df.na.drop(thresh=2, subset=("horsepower",))

Count all Null or NaN values in a DataFrame

from pyspark.sql.functions import col, count, isnan, when

result = df.select([count(when(isnan(c), c)).alias(c) for c in df.columns])
result = df.select(
    [count(when(col(c).isNull(), c)).alias(c) for c in df.columns]
)
# Code snippet result:
+---+---------+------------+----------+------+------------+---------+------+-------+
|mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|carname|
+---+---------+------------+----------+------+------------+---------+------+-------+
|  0|        0|           0|         6|     0|           0|        0|     0|      0|
+---+---------+------------+----------+------+------------+---------+------+-------+

Dealing with Dates

Parsing and processing dates and times.

Convert an ISO 8601 formatted date string to date type

from pyspark.sql.functions import col

df = spark.sparkContext.parallelize([["2021-01-01"], ["2022-01-01"]]).toDF(
    ["date_col"]
)
df = df.withColumn("date_col", col("date_col").cast("date"))
# Code snippet result:
+----------+
|  date_col|
+----------+
|2021-01-01|
|2022-01-01|
+----------+

Convert a custom formatted date string to date type

from pyspark.sql.functions import col, to_date

df = spark.sparkContext.parallelize([["20210101"], ["20220101"]]).toDF(
    ["date_col"]
)
df = df.withColumn("date_col", to_date(col("date_col"), "yyyyddMM"))
# Code snippet result:
+----------+
|  date_col|
+----------+
|2021-01-01|
|2022-01-01|
+----------+

Get the last day of the current month

from pyspark.sql.functions import col, last_day

df = spark.sparkContext.parallelize([["2020-01-01"], ["1712-02-10"]]).toDF(
    ["date_col"]
)
df = df.withColumn("date_col", col("date_col").cast("date")).withColumn(
    "last_day", last_day(col("date_col"))
)
# Code snippet result:
+----------+----------+
|  date_col|  last_day|
+----------+----------+
|2020-01-01|2020-01-31|
|1712-02-10|1712-02-29|
+----------+----------+

Convert UNIX (seconds since epoch) timestamp to date

from pyspark.sql.functions import col, from_unixtime

df = spark.sparkContext.parallelize([["1590183026"], ["2000000000"]]).toDF(
    ["ts_col"]
)
df = df.withColumn("date_col", from_unixtime(col("ts_col")))
# Code snippet result:
+----------+----------+
|    ts_col|  date_col|
+----------+----------+
|1590183026|2020-05...|
|2000000000|2033-05...|
+----------+----------+

Load a CSV file with complex dates into a DataFrame

from pyspark.sql.functions import udf
from pyspark.sql.types import TimestampType
import dateparser

# Use the dateparser module to convert many formats into timestamps.
date_convert = udf(
    lambda x: dateparser.parse(x) if x is not None else None, TimestampType()
)
df = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/date_examples.csv")
)
df = df.withColumn("parsed", date_convert(df.date))
# Code snippet result:
+----------+----------+
|      date|    parsed|
+----------+----------+
|2012-01...|2012-01...|
|2012-01...|2011-12...|
|2012-01...|2012-01...|
|2012-01...|2012-01...|
|2012-01...|2011-12...|
|2012-01...|2012-01...|
|01-01-2...|2012-01...|
|01-01-2...|2011-12...|
|01-01-2...|2012-01...|
|01-01-2...|2012-01...|
+----------+----------+
only showing top 10 rows

Unstructured Analytics

Analyzing unstructured data like JSON, XML, etc.

Flatten top level text fields in a JSONl document

from pyspark.sql.functions import col

# Load JSONl into a DataFrame. Schema is inferred automatically.
base = spark.read.json("data/financial.jsonl")

# Extract interesting fields. Alias keeps columns readable.
target_json_fields = [
    col("symbol").alias("symbol"),
    col("quoteType.longName").alias("longName"),
    col("price.marketCap.raw").alias("marketCap"),
    col("summaryDetail.previousClose.raw").alias("previousClose"),
    col("summaryDetail.fiftyTwoWeekHigh.raw").alias("fiftyTwoWeekHigh"),
    col("summaryDetail.fiftyTwoWeekLow.raw").alias("fiftyTwoWeekLow"),
    col("summaryDetail.trailingPE.raw").alias("trailingPE"),
]
df = base.select(target_json_fields)
# Code snippet result:
+------+----------+----------+-------------+----------------+---------------+----------+
|symbol|  longName| marketCap|previousClose|fiftyTwoWeekHigh|fiftyTwoWeekLow|trailingPE|
+------+----------+----------+-------------+----------------+---------------+----------+
|  ACLS|Axcelis...| 747277888|        22.58|            31.5|          12.99| 21.616652|
|  AMSC|America...| 403171712|        14.69|            18.5|            4.4|      null|
|   ATH|Athene ...|6210204672|        33.31|           50.43|          13.37| 13.404612|
|  BLDR|Builder...|3659266048|        31.69|           34.69|            9.0| 17.721876|
|   BRC|Brady C...|2069810944|        41.27|           59.11|           33.0| 18.997612|
|  CATC|Cambrid...| 437452224|        64.43|            82.0|           44.2| 14.195144|
|  CBSH|Commerc...|6501258752|        58.54|           71.92|          45.51|  22.01284|
|  CFFI|C&F Fin...| 113067632|        29.18|           57.61|           28.0|  6.614728|
|  CFFN|Capitol...|1613282304|        11.28|           14.57|           8.75| 22.937624|
|  COHR|Coheren...|2668193024|       112.97|          178.08|          78.21|      null|
+------+----------+----------+-------------+----------------+---------------+----------+
only showing top 10 rows

Flatten top level text fields from a JSON column

from pyspark.sql.functions import col, from_json, schema_of_json

# quote/escape options needed when loading CSV containing JSON.
base = (
    spark.read.format("csv")
    .option("header", True)
    .option("quote", '"')
    .option("escape", '"')
    .load("data/financial.csv")
)

# Infer JSON schema from one entry in the DataFrame.
sample_json_document = base.select("financial_data").first()[0]
schema = schema_of_json(sample_json_document)

# Parse using this schema.
parsed = base.withColumn("parsed", from_json("financial_data", schema))

# Extract interesting fields.
target_json_fields = [
    col("parsed.symbol").alias("symbol"),
    col("parsed.quoteType.longName").alias("longName"),
    col("parsed.price.marketCap.raw").alias("marketCap"),
    col("parsed.summaryDetail.previousClose.raw").alias("previousClose"),
    col("parsed.summaryDetail.fiftyTwoWeekHigh.raw").alias("fiftyTwoWeekHigh"),
    col("parsed.summaryDetail.fiftyTwoWeekLow.raw").alias("fiftyTwoWeekLow"),
    col("parsed.summaryDetail.trailingPE.raw").alias("trailingPE"),
]
df = parsed.select(target_json_fields)
# Code snippet result:
+------+----------+----------+-------------+----------------+---------------+----------+
|symbol|  longName| marketCap|previousClose|fiftyTwoWeekHigh|fiftyTwoWeekLow|trailingPE|
+------+----------+----------+-------------+----------------+---------------+----------+
|  ACLS|Axcelis...| 747277888|        22.58|            31.5|          12.99| 21.616652|
|  AMSC|America...| 403171712|        14.69|            18.5|            4.4|      null|
|   ATH|Athene ...|6210204672|        33.31|           50.43|          13.37| 13.404612|
|  BLDR|Builder...|3659266048|         null|            null|           null|      null|
|   BRC|Brady C...|2069810944|         null|            null|           null|      null|
|  CATC|Cambrid...| 437452224|         null|            null|           null|      null|
|  CBSH|Commerc...|6501258752|         null|            null|           null|      null|
|  CFFI|C&F Fin...| 113067632|         null|            null|           null|      null|
|  CFFN|Capitol...|1613282304|         null|            null|           null|      null|
|  COHR|Coheren...|2668193024|       112.97|          178.08|          78.21|      null|
+------+----------+----------+-------------+----------------+---------------+----------+
only showing top 10 rows

Unnest an array of complex structures

from pyspark.sql.functions import col, explode

base = spark.read.json("data/financial.jsonl")

# Analyze balance sheet data, which is held in an array of complex types.
target_json_fields = [
    col("symbol").alias("symbol"),
    col("balanceSheetHistoryQuarterly.balanceSheetStatements").alias(
        "balanceSheetStatements"
    ),
]
selected = base.select(target_json_fields)

# Select a few fields from the balance sheet statement data.
target_json_fields = [
    col("symbol").alias("symbol"),
    col("col.endDate.fmt").alias("endDate"),
    col("col.cash.raw").alias("cash"),
    col("col.totalAssets.raw").alias("totalAssets"),
    col("col.totalLiab.raw").alias("totalLiab"),
]

# Balance sheet data is in an array, use explode to generate one row per entry.
df = selected.select("symbol", explode("balanceSheetStatements")).select(
    target_json_fields
)
# Code snippet result:
+------+----------+----------+-----------+----------+
|symbol|   endDate|      cash|totalAssets| totalLiab|
+------+----------+----------+-----------+----------+
|  ACLS|2020-06-30| 190340000|  588564000| 143540000|
|  ACLS|2020-03-31| 174745000|  562573000| 135401000|
|  ACLS|2019-12-31| 139881000|  548094000| 128667000|
|  ACLS|2019-09-30| 155317000|  530477000| 122630000|
|  AMSC|2020-06-30|  20709000|  109670000|  40251000|
|  AMSC|2020-03-31|  24699000|  124109000|  51890000|
|  AMSC|2019-12-31|  25481000|  123491000|  46303000|
|  AMSC|2019-09-30|  52829000|  117443000|  40757000|
|   ATH|2020-06-30|6240000000| 1832410...|1676020...|
|   ATH|2020-03-31|5419000000| 1421790...|1316490...|
+------+----------+----------+-----------+----------+
only showing top 10 rows

Pandas

Using Python's Pandas library to augment Spark. Some operations require the pyarrow library.

Convert Spark DataFrame to Pandas DataFrame

pandas_df = df.toPandas()
# Code snippet result:
      mpg cylinders displacement  ... modelyear origin                    carname
0    18.0         8        307.0  ...        70      1  chevrolet chevelle malibu
1    15.0         8        350.0  ...        70      1          buick skylark 320
2    18.0         8        318.0  ...        70      1         plymouth satellite
3    16.0         8        304.0  ...        70      1              amc rebel sst
4    17.0         8        302.0  ...        70      1                ford torino
..    ...       ...          ...  ...       ...    ...                        ...
393  27.0         4        140.0  ...        82      1            ford mustang gl
394  44.0         4        97.00  ...        82      2                  vw pickup
395  32.0         4        135.0  ...        82      1              dodge rampage
396  28.0         4        120.0  ...        82      1                ford ranger
397  31.0         4        119.0  ...        82      1                 chevy s-10

[398 rows x 9 columns]

Convert Pandas DataFrame to Spark DataFrame

# This code converts everything to strings.
# If you want to preserve types, see https://gist.github.com/tonyfraser/79a255aa8a9d765bd5cf8bd13597171e
from pyspark.sql.types import StructField, StructType, StringType

schema = StructType(
    [StructField(name, StringType(), True) for name in pandas_df.columns]
)
df = spark.createDataFrame(pandas_df, schema)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Convert N rows from a DataFrame to a Pandas DataFrame

N = 10
pdf = df.limit(N).toPandas()
# Code snippet result:
    mpg cylinders displacement  ... modelyear origin                    carname
0  18.0         8        307.0  ...        70      1  chevrolet chevelle malibu
1  15.0         8        350.0  ...        70      1          buick skylark 320
2  18.0         8        318.0  ...        70      1         plymouth satellite
3  16.0         8        304.0  ...        70      1              amc rebel sst
4  17.0         8        302.0  ...        70      1                ford torino
5  15.0         8        429.0  ...        70      1           ford galaxie 500
6  14.0         8        454.0  ...        70      1           chevrolet impala
7  14.0         8        440.0  ...        70      1          plymouth fury iii
8  14.0         8        455.0  ...        70      1           pontiac catalina
9  15.0         8        390.0  ...        70      1         amc ambassador dpl

[10 rows x 9 columns]

Grouped Aggregation with Pandas

float: return pdf.mean() df = df.groupby("cylinders").agg(mean_udaf(df["mpg"])) ">
from pyspark.sql.functions import pandas_udf
from pandas import DataFrame

@pandas_udf("double")
def mean_udaf(pdf: DataFrame) -> float:
    return pdf.mean()

df = df.groupby("cylinders").agg(mean_udaf(df["mpg"]))
# Code snippet result:
+---------+--------------+
|cylinders|mean_udaf(mpg)|
+---------+--------------+
|      8.0|    14.9631...|
|      4.0|    29.2867...|
|      3.0|         20.55|
|      6.0|    19.9857...|
|      5.0|    27.3666...|
+---------+--------------+

Use a Pandas Grouped Map Function via applyInPandas

def rescale(pdf):
    minv = pdf.horsepower.min()
    maxv = pdf.horsepower.max() - minv
    return pdf.assign(horsepower=(pdf.horsepower - minv) / maxv * 100)

df = df.groupby("cylinders").applyInPandas(rescale, df.schema)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|      8.0|       307.0|28.5714...|3504.0|        12.0|       70|     1|chevrol...|
|15.0|      8.0|       350.0|53.5714...|3693.0|        11.5|       70|     1|buick s...|
|18.0|      8.0|       318.0|42.8571...|3436.0|        11.0|       70|     1|plymout...|
|16.0|      8.0|       304.0|42.8571...|3433.0|        12.0|       70|     1|amc reb...|
|17.0|      8.0|       302.0|35.7142...|3449.0|        10.5|       70|     1|ford to...|
|15.0|      8.0|       429.0|77.1428...|4341.0|        10.0|       70|     1|ford ga...|
|14.0|      8.0|       454.0|92.8571...|4354.0|         9.0|       70|     1|chevrol...|
|14.0|      8.0|       440.0|89.2857...|4312.0|         8.5|       70|     1|plymout...|
|14.0|      8.0|       455.0|96.4285...|4425.0|        10.0|       70|     1|pontiac...|
|15.0|      8.0|       390.0|71.4285...|3850.0|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Data Profiling

Extracting key statistics out of a body of data.

Compute the number of NULLs across all columns

from pyspark.sql.functions import col, count, when

result = df.select(
    [count(when(col(c).isNull(), c)).alias(c) for c in df.columns]
)
# Code snippet result:
+---+---------+------------+----------+------+------------+---------+------+-------+
|mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|carname|
+---+---------+------------+----------+------+------------+---------+------+-------+
|  0|        0|           0|         6|     0|           0|        0|     0|      0|
+---+---------+------------+----------+------+------------+---------+------+-------+

Compute average values of all numeric columns

numerics = set(["decimal", "double", "float", "integer", "long", "short"])
exprs = {x[0]: "avg" for x in df.dtypes if x[1] in numerics}
result = df.agg(exprs)
# Code snippet result:
+-----------+-----------------+--------------+----------+---------------+-----------------+
|avg(weight)|avg(acceleration)|avg(cylinders)|  avg(mpg)|avg(horsepower)|avg(displacement)|
+-----------+-----------------+--------------+----------+---------------+-----------------+
| 2970.42...|       15.5680...|    5.45477...|23.5145...|     104.469...|       193.425...|
+-----------+-----------------+--------------+----------+---------------+-----------------+

Compute minimum values of all numeric columns

numerics = set(["decimal", "double", "float", "integer", "long", "short"])
exprs = {x[0]: "min" for x in df.dtypes if x[1] in numerics}
result = df.agg(exprs)
# Code snippet result:
+-----------+-----------------+--------------+--------+---------------+-----------------+
|min(weight)|min(acceleration)|min(cylinders)|min(mpg)|min(horsepower)|min(displacement)|
+-----------+-----------------+--------------+--------+---------------+-----------------+
|     1613.0|              8.0|           3.0|     9.0|           46.0|             68.0|
+-----------+-----------------+--------------+--------+---------------+-----------------+

Compute maximum values of all numeric columns

numerics = set(["decimal", "double", "float", "integer", "long", "short"])
exprs = {x[0]: "max" for x in df.dtypes if x[1] in numerics}
result = df.agg(exprs)
# Code snippet result:
+-----------+-----------------+--------------+--------+---------------+-----------------+
|max(weight)|max(acceleration)|max(cylinders)|max(mpg)|max(horsepower)|max(displacement)|
+-----------+-----------------+--------------+--------+---------------+-----------------+
|     5140.0|             24.8|           8.0|    46.6|          230.0|            455.0|
+-----------+-----------------+--------------+--------+---------------+-----------------+

Compute median values of all numeric columns

import pyspark.sql.functions as F

numerics = set(["decimal", "double", "float", "integer", "long", "short"])
aggregates = []
for name, dtype in df.dtypes:
    if dtype not in numerics:
        continue
    aggregates.append(
        F.expr("percentile({}, 0.5)".format(name)).alias(
            "{}_median".format(name)
        )
    )
profiled = df.agg(*aggregates)
# Code snippet result:
+----------+----------------+-------------------+-----------------+-------------+-------------------+
|mpg_median|cylinders_median|displacement_median|horsepower_median|weight_median|acceleration_median|
+----------+----------------+-------------------+-----------------+-------------+-------------------+
|      23.0|             4.0|              148.5|             93.5|       2803.5|               15.5|
+----------+----------------+-------------------+-----------------+-------------+-------------------+

Identify Outliers in a DataFrame

z_score_threshold) ">
# This approach uses the Median Absolute Deviation.
# Outliers are based on variances in a single numeric column.
# Tune outlier sensitivity using z_score_threshold.
from pyspark.sql.functions import col, sqrt

target_column = "mpg"
z_score_threshold = 2

# Compute the median of the target column.
target_df = df.select(target_column)
target_df.registerTempTable("target_column")
profiled = sqlContext.sql(
    f"select percentile({target_column}, 0.5) as median from target_column"
)

# Compute deviations.
deviations = target_df.crossJoin(profiled).withColumn(
    "deviation", sqrt((target_df[target_column] - profiled["median"]) ** 2)
)
deviations.registerTempTable("deviations")

# The Median Absolute Deviation
mad = sqlContext.sql("select percentile(deviation, 0.5) as mad from deviations")

# Add a modified z score to the original DataFrame.
df = (
    df.crossJoin(mad)
    .crossJoin(profiled)
    .withColumn(
        "zscore",
        0.6745
        * sqrt((df[target_column] - profiled["median"]) ** 2)
        / mad["mad"],
    )
)

df_outliers = df.where(col("zscore") > z_score_threshold)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+---+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|mad|median|    zscore|
+----+---------+------------+----------+------+------------+---------+------+----------+---+------+----------+
|43.1|      4.0|        90.0|      48.0|1985.0|        21.5|       78|     2|volkswa...|6.0|  23.0|2.25957...|
|41.5|      4.0|        98.0|      76.0|2144.0|        14.7|       80|     2| vw rabbit|6.0|  23.0|2.07970...|
|46.6|      4.0|        86.0|      65.0|2110.0|        17.9|       80|     3| mazda glc|6.0|  23.0|2.65303...|
|40.8|      4.0|        85.0|      65.0|2110.0|        19.2|       80|     3|datsun 210|6.0|  23.0|2.00101...|
|44.3|      4.0|        90.0|      48.0|2085.0|        21.7|       80|     2|vw rabb...|6.0|  23.0|2.39447...|
|43.4|      4.0|        90.0|      48.0|2335.0|        23.7|       80|     2|vw dash...|6.0|  23.0|    2.2933|
|44.6|      4.0|        91.0|      67.0|1850.0|        13.8|       80|     3|honda c...|6.0|  23.0|    2.4282|
|40.9|      4.0|        85.0|      null|1835.0|        17.3|       80|     2|renault...|6.0|  23.0|2.01225...|
|44.0|      4.0|        97.0|      52.0|2130.0|        24.6|       82|     2| vw pickup|6.0|  23.0|   2.36075|
+----+---------+------------+----------+------+------------+---------+------+----------+---+------+----------+

Data Management

Upserts, updates and deletes on data.

Update records in a DataFrame using Delta Tables

from pyspark.sql.functions import expr

output_path = "delta_tests"

# Currently you have to save/reload to convert from table to DataFrame.
df.write.mode("overwrite").format("delta").save(output_path)
dt = DeltaTable.forPath(spark, output_path)

# Run a SQL update operation.
dt.update(
    condition=expr("carname like 'Volks%'"), set={"carname": expr("carname")}
)

# Convert back to a DataFrame.
df = dt.toDF()
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Merge into a Delta table

<> corrected.carname"), set={"carname": col("corrected.carname")}, ) .whenNotMatchedInsertAll() .execute() ) # Show select table history. history = dt.history().select("version operation operationMetrics".split()) ">
from pyspark.sql.functions import col, expr

# Save the original data.
output_path = "delta_tests"
df.write.mode("overwrite").format("delta").save(output_path)

# Load data that corrects some car names.
corrected_df = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/auto-mpg-fixed.csv")
)

# Merge the corrected data in.
dt = DeltaTable.forPath(spark, output_path)
ret = (
    dt.alias("original")
    .merge(
        corrected_df.alias("corrected"),
        "original.modelyear = corrected.modelyear and original.weight = corrected.weight and original.acceleration = corrected.acceleration",
    )
    .whenMatchedUpdate(
        condition=expr("original.carname <> corrected.carname"),
        set={"carname": col("corrected.carname")},
    )
    .whenNotMatchedInsertAll()
    .execute()
)

# Show select table history.
history = dt.history().select("version operation operationMetrics".split())
# Code snippet result:
+-------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|version|operation|operationMetrics                                                                                                                                                                                                                                                                        |
+-------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|17     |MERGE    |{numTargetRowsCopied -> 373, numTargetRowsDeleted -> 0, numTargetFilesAdded -> 175, executionTimeMs -> 10798, numTargetRowsInserted -> 0, scanTimeMs -> 5350, numTargetRowsUpdated -> 25, numOutputRows -> 398, numSourceRows -> 398, numTargetFilesRemoved -> 1, rewriteTimeMs -> 5443}|
|16     |WRITE    |{numFiles -> 1, numOutputBytes -> 11582, numOutputRows -> 398}                                                                                                                                                                                                                          |
|15     |WRITE    |{numFiles -> 1, numOutputBytes -> 11582, numOutputRows -> 398}                                                                                                                                                                                                                          |
|14     |MERGE    |{numTargetRowsCopied -> 373, numTargetRowsDeleted -> 0, numTargetFilesAdded -> 175, executionTimeMs -> 7199, numTargetRowsInserted -> 0, scanTimeMs -> 3172, numTargetRowsUpdated -> 25, numOutputRows -> 398, numSourceRows -> 398, numTargetFilesRemoved -> 1, rewriteTimeMs -> 4023} |
|13     |WRITE    |{numFiles -> 1, numOutputBytes -> 11582, numOutputRows -> 398}                                                                                                                                                                                                                          |
|12     |WRITE    |{numFiles -> 1, numOutputBytes -> 11582, numOutputRows -> 398}                                                                                                                                                                                                                          |
|11     |MERGE    |{numTargetRowsCopied -> 373, numTargetRowsDeleted -> 0, numTargetFilesAdded -> 175, executionTimeMs -> 8465, numTargetRowsInserted -> 0, scanTimeMs -> 4395, numTargetRowsUpdated -> 25, numOutputRows -> 398, numSourceRows -> 398, numTargetFilesRemoved -> 1, rewriteTimeMs -> 4066} |
|10     |WRITE    |{numFiles -> 1, numOutputBytes -> 11582, numOutputRows -> 398}                                                                                                                                                                                                                          |
|9      |WRITE    |{numFiles -> 1, numOutputBytes -> 11582, numOutputRows -> 398}                                                                                                                                                                                                                          |
|8      |MERGE    |{numTargetRowsCopied -> 373, numTargetRowsDeleted -> 0, numTargetFilesAdded -> 175, executionTimeMs -> 6766, numTargetRowsInserted -> 0, scanTimeMs -> 3084, numTargetRowsUpdated -> 25, numOutputRows -> 398, numSourceRows -> 398, numTargetFilesRemoved -> 1, rewriteTimeMs -> 3679} |
+-------+---------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
only showing top 10 rows

Spark Streaming

Spark Streaming (Focuses on Structured Streaming).

Connect to Kafka using SASL PLAIN authentication

options = {
    "kafka.sasl.jaas.config": 'org.apache.kafka.common.security.plain.PlainLoginModule required username="USERNAME" password="PASSWORD";',
    "kafka.sasl.mechanism": "PLAIN",
    "kafka.security.protocol": "SASL_SSL",
    "kafka.bootstrap.servers": "server:9092",
    "group.id": "my_group",
    "subscribe": "my_topic",
}
df = spark.readStream.format("kafka").options(**options).load()

Create a windowed Structured Stream over input CSV files

from pyspark.sql.functions import avg, count, current_timestamp, window
from pyspark.sql.types import (
    StructField,
    StructType,
    DoubleType,
    IntegerType,
    StringType,
)

input_location = "streaming/input"
schema = StructType(
    [
        StructField("mpg", DoubleType(), True),
        StructField("cylinders", IntegerType(), True),
        StructField("displacement", DoubleType(), True),
        StructField("horsepower", DoubleType(), True),
        StructField("weight", DoubleType(), True),
        StructField("acceleration", DoubleType(), True),
        StructField("modelyear", IntegerType(), True),
        StructField("origin", IntegerType(), True),
        StructField("carname", StringType(), True),
        StructField("manufacturer", StringType(), True),
    ]
)
df = spark.readStream.csv(path=input_location, schema=schema).withColumn(
    "timestamp", current_timestamp()
)

aggregated = (
    df.groupBy(window(df.timestamp, "1 minute"), "manufacturer")
    .agg(
        avg("horsepower").alias("avg_horsepower"),
        avg("timestamp").alias("avg_timestamp"),
        count("modelyear").alias("count"),
    )
    .coalesce(10)
)
summary = aggregated.orderBy("window", "manufacturer")
query = (
    summary.writeStream.outputMode("complete")
    .format("console")
    .option("truncate", False)
    .start()
)
query.awaitTermination()
# Code snippet result:

-------------------------------------------                                     
Batch: 0
-------------------------------------------
+------------------------------------------+------------+--------------+----------------+-----+
|window                                    |manufacturer|avg_horsepower|avg_timestamp   |count|
+------------------------------------------+------------+--------------+----------------+-----+
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|amc         |131.75        |1.616243250178E9|4    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|chevrolet   |175.0         |1.616243250178E9|4    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|datsun      |88.0          |1.616243250178E9|1    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|dodge       |190.0         |1.616243250178E9|2    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|ford        |159.5         |1.616243250178E9|4    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|plymouth    |155.0         |1.616243250178E9|4    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|pontiac     |225.0         |1.616243250178E9|1    |
+------------------------------------------+------------+--------------+----------------+-----+

-------------------------------------------                                     
Batch: 1
-------------------------------------------
+------------------------------------------+------------+------------------+--------------------+-----+
|window                                    |manufacturer|avg_horsepower    |avg_timestamp       |count|
+------------------------------------------+------------+------------------+--------------------+-----+
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|amc         |119.57142857142857|1.6162432596022856E9|7    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|chevrolet   |140.875           |1.6162432611729999E9|8    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|datsun      |81.66666666666667 |1.616243264838E9    |3    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|dodge       |186.66666666666666|1.6162432575080001E9|3    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|ford        |142.125           |1.6162432623946667E9|9    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|plymouth    |135.0             |1.6162432596022856E9|7    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|pontiac     |168.75            |1.6162432666704998E9|4    |
+------------------------------------------+------------+------------------+--------------------+-----+

-------------------------------------------                                     
Batch: 2
-------------------------------------------
+------------------------------------------+------------+------------------+--------------------+-----+
|window                                    |manufacturer|avg_horsepower    |avg_timestamp       |count|
+------------------------------------------+------------+------------------+--------------------+-----+
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|amc         |119.57142857142857|1.6162432596022856E9|7    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|chevrolet   |140.875           |1.6162432611729999E9|8    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|datsun      |81.66666666666667 |1.616243264838E9    |3    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|dodge       |186.66666666666666|1.6162432575080001E9|3    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|ford        |142.125           |1.6162432623946667E9|9    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|plymouth    |135.0             |1.6162432596022856E9|7    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|pontiac     |168.75            |1.6162432666704998E9|4    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|amc         |150.0             |1.616243297163E9    |2    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|chevrolet   |128.33333333333334|1.616243297163E9    |3    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|datsun      |92.0              |1.616243297163E9    |1    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|dodge       |80.0              |1.616243297163E9    |2    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|ford        |116.25            |1.616243297163E9    |4    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|plymouth    |150.0             |1.616243297163E9    |2    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|pontiac     |175.0             |1.616243297163E9    |1    |
+------------------------------------------+------------+------------------+--------------------+-----+

-------------------------------------------                                     
Batch: 3
-------------------------------------------
+------------------------------------------+------------+------------------+--------------------+-----+
|window                                    |manufacturer|avg_horsepower    |avg_timestamp       |count|
+------------------------------------------+------------+------------------+--------------------+-----+
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|amc         |119.57142857142857|1.6162432596022856E9|7    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|chevrolet   |140.875           |1.6162432611729999E9|8    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|datsun      |81.66666666666667 |1.616243264838E9    |3    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|dodge       |186.66666666666666|1.6162432575080001E9|3    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|ford        |142.125           |1.6162432623946667E9|9    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|plymouth    |135.0             |1.6162432596022856E9|7    |
|{2021-03-20 05:27:00, 2021-03-20 05:28:00}|pontiac     |168.75            |1.6162432666704998E9|4    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|amc         |137.5             |1.616243313837E9    |6    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|chevrolet   |127.44444444444444|1.6162433138370001E9|9    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|datsun      |93.0              |1.6162433096685E9   |2    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|dodge       |115.0             |1.6162433096685E9   |4    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|ford        |122.22222222222223|1.6162433110579998E9|9    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|plymouth    |136.66666666666666|1.616243313837E9    |6    |
|{2021-03-20 05:28:00, 2021-03-20 05:29:00}|pontiac     |202.5             |1.6162433096685E9   |2    |
+------------------------------------------+------------+------------------+--------------------+-----+

Create an unwindowed Structured Stream over input CSV files

from pyspark.sql.functions import avg, count, desc
from pyspark.sql.types import (
    StructField,
    StructType,
    DoubleType,
    IntegerType,
    StringType,
)

input_location = "streaming/input"
schema = StructType(
    [
        StructField("mpg", DoubleType(), True),
        StructField("cylinders", IntegerType(), True),
        StructField("displacement", DoubleType(), True),
        StructField("horsepower", DoubleType(), True),
        StructField("weight", DoubleType(), True),
        StructField("acceleration", DoubleType(), True),
        StructField("modelyear", IntegerType(), True),
        StructField("origin", IntegerType(), True),
        StructField("carname", StringType(), True),
        StructField("manufacturer", StringType(), True),
    ]
)

df = spark.readStream.csv(path=input_location, schema=schema)
summary = (
    df.groupBy("modelyear")
    .agg(
        avg("horsepower").alias("avg_horsepower"),
        count("modelyear").alias("count"),
    )
    .orderBy(desc("modelyear"))
    .coalesce(10)
)
query = summary.writeStream.outputMode("complete").format("console").start()
query.awaitTermination()
# Code snippet result:

-------------------------------------------
Batch: 0
-------------------------------------------
+---------+------------------+-----+
|modelyear|    avg_horsepower|count|
+---------+------------------+-----+
|       70|147.82758620689654|   29|
+---------+------------------+-----+

-------------------------------------------
Batch: 1
-------------------------------------------
+---------+------------------+-----+
|modelyear|    avg_horsepower|count|
+---------+------------------+-----+
|       71|107.03703703703704|   28|
|       70|147.82758620689654|   29|
+---------+------------------+-----+

-------------------------------------------
Batch: 2
-------------------------------------------
+---------+------------------+-----+
|modelyear|    avg_horsepower|count|
+---------+------------------+-----+
|       72|120.17857142857143|   28|
|       71|107.03703703703704|   28|
|       70|147.82758620689654|   29|
+---------+------------------+-----+

Add the current timestamp to a DataFrame

from pyspark.sql.functions import current_timestamp

df = df.withColumn("timestamp", current_timestamp())
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname| timestamp|
+----+---------+------------+----------+------+------------+---------+------+----------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|2021-09...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|2021-09...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|2021-09...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|2021-09...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|2021-09...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|2021-09...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|2021-09...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|2021-09...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|2021-09...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|2021-09...|
+----+---------+------------+----------+------+------------+---------+------+----------+----------+
only showing top 10 rows

Time Series

Techniques for dealing with time series data.

Zero fill missing values in a timeseries

from pyspark.sql.functions import coalesce, lit

# Use distinct values of customer and date from the dataset itself.
# In general it's safer to use known reference tables for IDs and dates.
filled = df.join(
    df.select("customer_id").distinct().crossJoin(df.select("date").distinct()),
    ["date", "customer_id"],
    "right",
).select("date", "customer_id", coalesce("spend_dollars", lit(0)))
# Code snippet result:
+----------+-----------+--------------------------+
|      date|customer_id|coalesce(spend_dollars, 0)|
+----------+-----------+--------------------------+
|2022-07-31|         31|                   16.4400|
|2020-04-30|         31|                    0.0000|
|2022-01-31|         31|                   25.1100|
|2021-09-30|         31|                    2.1400|
|2021-05-31|         31|                   34.3900|
|2022-02-28|         31|                   59.7800|
|2021-07-31|         31|                    8.2700|
|2020-07-31|         31|                    0.0000|
|2021-04-30|         31|                   20.7000|
|2021-10-31|         31|                   62.1500|
+----------+-----------+--------------------------+
only showing top 10 rows

First Time an ID is Seen

from pyspark.sql.functions import first
from pyspark.sql.window import Window

w = Window().partitionBy("customer_id").orderBy("date")
df = df.withColumn("first_seen", first("date").over(w))
# Code snippet result:
+----------+-----------+-------------+----------+
|      date|customer_id|spend_dollars|first_seen|
+----------+-----------+-------------+----------+
|2020-09-30|         31|      33.4400|2020-09-30|
|2020-10-31|         31|      24.8000|2020-09-30|
|2020-11-30|         31|     111.1600|2020-09-30|
|2020-12-31|         31|      22.3800|2020-09-30|
|2021-01-31|         31|      31.0600|2020-09-30|
|2021-02-28|         31|      22.4300|2020-09-30|
|2021-04-30|         31|      20.7000|2020-09-30|
|2021-05-31|         31|      34.3900|2020-09-30|
|2021-06-30|         31|      11.0800|2020-09-30|
|2021-07-31|         31|       8.2700|2020-09-30|
+----------+-----------+-------------+----------+
only showing top 10 rows

Cumulative Sum

from pyspark.sql.functions import sum
from pyspark.sql.window import Window

w = (
    Window()
    .partitionBy("customer_id")
    .orderBy("date")
    .rangeBetween(Window.unboundedPreceding, 0)
)
df = df.withColumn("running_sum", sum("spend_dollars").over(w))
# Code snippet result:
+----------+-----------+-------------+-----------+
|      date|customer_id|spend_dollars|running_sum|
+----------+-----------+-------------+-----------+
|2020-09-30|         31|      33.4400|    33.4400|
|2020-10-31|         31|      24.8000|    58.2400|
|2020-11-30|         31|     111.1600|   169.4000|
|2020-12-31|         31|      22.3800|   191.7800|
|2021-01-31|         31|      31.0600|   222.8400|
|2021-02-28|         31|      22.4300|   245.2700|
|2021-04-30|         31|      20.7000|   265.9700|
|2021-05-31|         31|      34.3900|   300.3600|
|2021-06-30|         31|      11.0800|   311.4400|
|2021-07-31|         31|       8.2700|   319.7100|
+----------+-----------+-------------+-----------+
only showing top 10 rows

Cumulative Sum in a Period

from pyspark.sql.functions import sum, year
from pyspark.sql.window import Window

# Add an additional partition clause for the sub-period.
w = (
    Window()
    .partitionBy(["customer_id", year("date")])
    .orderBy("date")
    .rangeBetween(Window.unboundedPreceding, 0)
)
df = df.withColumn("running_sum", sum("spend_dollars").over(w))
# Code snippet result:
+----------+-----------+-------------+-----------+
|      date|customer_id|spend_dollars|running_sum|
+----------+-----------+-------------+-----------+
|2021-01-31|         26|      13.1900|    13.1900|
|2021-02-28|         26|      41.0800|    54.2700|
|2021-03-31|         26|     152.3100|   206.5800|
|2021-05-31|         26|      16.1600|   222.7400|
|2021-07-31|         26|      44.8800|   267.6200|
|2021-09-30|         26|      44.0800|   311.7000|
|2021-10-31|         26|      69.2700|   380.9700|
|2021-11-30|         26|      53.1100|   434.0800|
|2021-12-31|         26|       7.2300|   441.3100|
|2021-01-31|         31|      31.0600|    31.0600|
+----------+-----------+-------------+-----------+
only showing top 10 rows

Cumulative Average

from pyspark.sql.functions import avg
from pyspark.sql.window import Window

w = (
    Window()
    .partitionBy("customer_id")
    .orderBy("date")
    .rangeBetween(Window.unboundedPreceding, 0)
)
df = df.withColumn("running_avg", avg("spend_dollars").over(w))
# Code snippet result:
+----------+-----------+-------------+-----------+
|      date|customer_id|spend_dollars|running_avg|
+----------+-----------+-------------+-----------+
|2020-09-30|         31|      33.4400| 33.4400...|
|2020-10-31|         31|      24.8000| 29.1200...|
|2020-11-30|         31|     111.1600| 56.4666...|
|2020-12-31|         31|      22.3800| 47.9450...|
|2021-01-31|         31|      31.0600| 44.5680...|
|2021-02-28|         31|      22.4300| 40.8783...|
|2021-04-30|         31|      20.7000| 37.9957...|
|2021-05-31|         31|      34.3900| 37.5450...|
|2021-06-30|         31|      11.0800| 34.6044...|
|2021-07-31|         31|       8.2700| 31.9710...|
+----------+-----------+-------------+-----------+
only showing top 10 rows

Cumulative Average in a Period

from pyspark.sql.functions import avg, year
from pyspark.sql.window import Window

# Add an additional partition clause for the sub-period.
w = (
    Window()
    .partitionBy(["customer_id", year("date")])
    .orderBy("date")
    .rangeBetween(Window.unboundedPreceding, 0)
)
df = df.withColumn("running_avg", avg("spend_dollars").over(w))
# Code snippet result:
+----------+-----------+-------------+-----------+
|      date|customer_id|spend_dollars|running_avg|
+----------+-----------+-------------+-----------+
|2021-01-31|         26|      13.1900| 13.1900...|
|2021-02-28|         26|      41.0800| 27.1350...|
|2021-03-31|         26|     152.3100| 68.8600...|
|2021-05-31|         26|      16.1600| 55.6850...|
|2021-07-31|         26|      44.8800| 53.5240...|
|2021-09-30|         26|      44.0800| 51.9500...|
|2021-10-31|         26|      69.2700| 54.4242...|
|2021-11-30|         26|      53.1100| 54.2600...|
|2021-12-31|         26|       7.2300| 49.0344...|
|2021-01-31|         31|      31.0600| 31.0600...|
+----------+-----------+-------------+-----------+
only showing top 10 rows

Machine Learning

Machine Learning

Save a model

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import RandomForestRegressor

vectorAssembler = VectorAssembler(
    inputCols=[
        "cylinders",
        "displacement",
        "horsepower",
        "weight",
        "acceleration",
    ],
    outputCol="features",
    handleInvalid="skip",
)
assembled = vectorAssembler.transform(df)

# Random test/train split.
train_df, test_df = assembled.randomSplit([0.7, 0.3])

# Define the model.
rf = RandomForestRegressor(
    numTrees=50,
    featuresCol="features",
    labelCol="mpg",
)

# Train the model.
rf_model = rf.fit(train_df)
rf_model.write().overwrite().save("rf_regression.model")

Load a model and use it for predictions

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import RandomForestRegressionModel

# Model type and assembled features need to agree with the trained model.
rf_model = RandomForestRegressionModel.load("rf_regression.model")
vectorAssembler = VectorAssembler(
    inputCols=[
        "cylinders",
        "displacement",
        "horsepower",
        "weight",
        "acceleration",
    ],
    outputCol="features",
    handleInvalid="skip",
)
assembled = vectorAssembler.transform(df)

predictions = rf_model.transform(assembled).select(
    "carname", "mpg", "prediction"
)
# Code snippet result:
+----------+----+----------+
|   carname| mpg|prediction|
+----------+----+----------+
|chevrol...|18.0|17.2741...|
|buick s...|15.0|15.1640...|
|plymout...|18.0|16.3667...|
|amc reb...|16.0|16.2606...|
|ford to...|17.0|17.2151...|
|ford ga...|15.0|14.3816...|
|chevrol...|14.0|14.3816...|
|plymout...|14.0|14.3816...|
|pontiac...|14.0|13.4232...|
|amc amb...|15.0|14.6402...|
+----------+----+----------+
only showing top 10 rows

A basic Linear Regression model

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import LinearRegression

vectorAssembler = VectorAssembler(
    inputCols=[
        "cylinders",
        "displacement",
        "horsepower",
        "weight",
        "acceleration",
    ],
    outputCol="features",
    handleInvalid="skip",
)
assembled = vectorAssembler.transform(df)
assembled = assembled.select(["features", "mpg", "carname"])

# Random test/train split.
train_df, test_df = assembled.randomSplit([0.7, 0.3])

# Define the model.
lr = LinearRegression(
    featuresCol="features",
    labelCol="mpg",
    maxIter=10,
    regParam=0.3,
    elasticNetParam=0.8,
)

# Train the model.
lr_model = lr.fit(train_df)

# Stats for training.
print(
    "RMSE={} r2={}".format(
        lr_model.summary.rootMeanSquaredError, lr_model.summary.r2
    )
)

# Make predictions.
predictions = lr_model.transform(test_df)
# Code snippet result:
+----------+----+----------+----------+
|  features| mpg|   carname|prediction|
+----------+----+----------+----------+
|[4.0,71...|31.0|toyota ...|31.3498...|
|[4.0,76...|31.0|toyota ...|32.1648...|
|[4.0,83...|32.0|datsun 710|30.4888...|
|[4.0,85...|29.0|chevrol...|30.6520...|
|[4.0,85...|31.8|datsun 210|30.2627...|
|[4.0,85...|33.5|datsun ...|30.3609...|
|[4.0,85...|39.4|datsun ...|29.9131...|
|[4.0,86...|39.0|plymout...|30.8017...|
|[4.0,86...|37.2|datsun 310|30.2518...|
|[4.0,90...|43.1|volkswa...|30.8952...|
+----------+----+----------+----------+
only showing top 10 rows

A basic Random Forest Regression model

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator

vectorAssembler = VectorAssembler(
    inputCols=[
        "cylinders",
        "displacement",
        "horsepower",
        "weight",
        "acceleration",
    ],
    outputCol="features",
    handleInvalid="skip",
)
assembled = vectorAssembler.transform(df)
assembled = assembled.select(["features", "mpg", "carname"])

# Random test/train split.
train_df, test_df = assembled.randomSplit([0.7, 0.3])

# Define the model.
rf = RandomForestRegressor(
    numTrees=20,
    featuresCol="features",
    labelCol="mpg",
)

# Train the model.
rf_model = rf.fit(train_df)

# Make predictions.
predictions = rf_model.transform(test_df)

# Evaluate the model.
r2 = RegressionEvaluator(
    labelCol="mpg", predictionCol="prediction", metricName="r2"
).evaluate(predictions)
rmse = RegressionEvaluator(
    labelCol="mpg", predictionCol="prediction", metricName="rmse"
).evaluate(predictions)
print("RMSE={} r2={}".format(rmse, r2))
# Code snippet result:
+----------+----+----------+----------+
|  features| mpg|   carname|prediction|
+----------+----+----------+----------+
|[3.0,70...|19.0|mazda r...|24.8344...|
|[4.0,71...|31.0|toyota ...|32.8749...|
|[4.0,71...|32.0|toyota ...|33.2013...|
|[4.0,78...|32.8|mazda g...|33.2214...|
|[4.0,79...|39.1|toyota ...|33.2573...|
|[4.0,81...|35.1|honda c...|34.5568...|
|[4.0,83...|32.0|datsun 710|34.5682...|
|[4.0,86...|37.2|datsun 310|34.1947...|
|[4.0,86...|46.6| mazda glc|34.7690...|
|[4.0,89...|38.1|toyota ...|34.0990...|
+----------+----+----------+----------+
only showing top 10 rows

A basic Random Forest Classification model

from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.feature import VectorAssembler

label_column = "cover_type"
vectorAssembler = VectorAssembler(
    inputCols=df.columns,
    outputCol="features",
    handleInvalid="skip",
)
assembled = vectorAssembler.transform(df)

# Random test/train split.
train_df, test_df = assembled.randomSplit([0.7, 0.3])

# Define the model.
rf = RandomForestClassifier(
    numTrees=50,
    featuresCol="features",
    labelCol=label_column,
)

# Train the model.
rf_model = rf.fit(train_df)

# Make predictions.
predictions = rf_model.transform(test_df)

# Select (prediction, true label) and compute test error
evaluator = MulticlassClassificationEvaluator(
    labelCol=label_column, predictionCol="prediction", metricName="accuracy"
)
accuracy = evaluator.evaluate(predictions)
print("Test Error = %g" % (1.0 - accuracy))
results = predictions.select([label_column, "prediction"])
# Code snippet result:
+----------+----------+
|cover_type|prediction|
+----------+----------+
|         3|       3.0|
|         3|       3.0|
|         6|       6.0|
|         3|       3.0|
|         3|       3.0|
|         3|       3.0|
|         6|       6.0|
|         6|       6.0|
|         6|       3.0|
|         6|       6.0|
+----------+----------+
only showing top 10 rows

Encode string variables before using a VectorAssembler

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Add manufacturer name we will use as a string column.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))

# Strings must be indexed or we will get:
# pyspark.sql.utils.IllegalArgumentException: Data type string of column manufacturer is not supported.
#
# We also encode outside of the main pipeline or else we risk getting:
#  Caused by: org.apache.spark.SparkException: Unseen label: XXX. To handle unseen labels, set Param handleInvalid to keep.
#
# This is because training data is selected randomly and may not have all possible categories.
manufacturer_encoded = StringIndexer(
    inputCol="manufacturer", outputCol="manufacturer_encoded"
)
encoded_df = manufacturer_encoded.fit(df).transform(df)

# Set up our main ML pipeline.
columns_to_assemble = [
    "manufacturer_encoded",
    "cylinders",
    "displacement",
    "horsepower",
    "weight",
    "acceleration",
]
vector_assembler = VectorAssembler(
    inputCols=columns_to_assemble,
    outputCol="features",
    handleInvalid="skip",
)

# Random test/train split.
train_df, test_df = encoded_df.randomSplit([0.7, 0.3])

# Define the model.
rf = RandomForestRegressor(
    numTrees=20,
    featuresCol="features",
    labelCol="mpg",
)

# Run the pipeline.
pipeline = Pipeline(stages=[vector_assembler, rf])
model = pipeline.fit(train_df)

# Make predictions.
predictions = model.transform(test_df).select("carname", "mpg", "prediction")

# Select (prediction, true label) and compute test error
rmse = RegressionEvaluator(
    labelCol="mpg", predictionCol="prediction", metricName="rmse"
).evaluate(predictions)
print("RMSE={}".format(rmse))
# Code snippet result:
+----------+----+----------+
|   carname| mpg|prediction|
+----------+----+----------+
|chevrol...|10.0|13.6711...|
|oldsmob...|12.0|13.0878...|
|dodge m...|12.0|13.5042...|
| ford f108|13.0|16.1286...|
|ford gr...|13.0|14.4684...|
|chevrol...|13.0|16.1248...|
|dodge d100|13.0|15.0328...|
|chevrol...|13.0|14.8465...|
|chevrol...|13.0|13.6027...|
|ford co...|13.0|13.3417...|
+----------+----+----------+
only showing top 10 rows

Get feature importances of a trained model

from pyspark.ml import Pipeline
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Add manufacturer name we will use as a string column.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))
manufacturer_encoded = StringIndexer(
    inputCol="manufacturer", outputCol="manufacturer_encoded"
)
encoded_df = manufacturer_encoded.fit(df).transform(df)

# Set up our main ML pipeline.
columns_to_assemble = [
    "manufacturer_encoded",
    "cylinders",
    "displacement",
    "horsepower",
    "weight",
    "acceleration",
]
vector_assembler = VectorAssembler(
    inputCols=columns_to_assemble,
    outputCol="features",
    handleInvalid="skip",
)

# Random test/train split.
train_df, test_df = encoded_df.randomSplit([0.7, 0.3])

# Define the model.
rf = RandomForestRegressor(
    numTrees=20,
    featuresCol="features",
    labelCol="mpg",
)

# Run the pipeline.
pipeline = Pipeline(stages=[vector_assembler, rf])
model = pipeline.fit(train_df)

# Make predictions.
predictions = model.transform(test_df).select("carname", "mpg", "prediction")

# Get feature importances.
real_model = model.stages[1]
for feature, importance in zip(
    columns_to_assemble, real_model.featureImportances
):
    print("{} contributes {:0.3f}%".format(feature, importance * 100))
# Code snippet result:
manufacturer_encoded contributes 5.589%
cylinders contributes 8.920%
displacement contributes 27.820%
horsepower contributes 23.499%
weight contributes 31.229%
acceleration contributes 2.944%

Automatically encode categorical variables

from pyspark.ml.feature import VectorAssembler, VectorIndexer
from pyspark.ml.regression import RandomForestRegressor
from pyspark.sql.functions import countDistinct

# Remove non-numeric columns.
df = df.drop("carname")

# Profile this DataFrame to get a good value for maxCategories.
grouped = df.agg(*(countDistinct(c) for c in df.columns))
grouped.show()

# Assemble all columns except mpg into a vector.
feature_columns = list(df.columns)
feature_columns.remove("mpg")
vector_assembler = VectorAssembler(
    inputCols=feature_columns,
    outputCol="features",
    handleInvalid="skip",
)
assembled = vector_assembler.transform(df)

# From profiling the dataset, 15 is a good value for max categories.
indexer = VectorIndexer(
    inputCol="features", outputCol="indexed", maxCategories=15
)
indexed = indexer.fit(assembled).transform(assembled)

# Build and train the model.
train_df, test_df = indexed.randomSplit([0.7, 0.3])
rf = RandomForestRegressor(
    numTrees=50,
    featuresCol="features",
    labelCol="mpg",
)
rf_model = rf.fit(train_df)

# Get feature importances.
for feature, importance in zip(feature_columns, rf_model.featureImportances):
    print("{} contributes {:0.3f}%".format(feature, importance * 100))

# Make predictions.
predictions = rf_model.transform(test_df).select("mpg", "prediction")
# Code snippet result:
+----+----------+
| mpg|prediction|
+----+----------+
| 9.0|13.4075...|
|11.0|15.2570...|
|12.0|13.2448...|
|12.0|13.0404...|
|12.0|13.1712...|
|13.0|16.2509...|
|13.0|15.3789...|
|13.0|14.6230...|
|13.0|14.3115...|
|13.0|13.2955...|
+----+----------+
only showing top 10 rows

Hyperparameter tuning

from pyspark.ml import Pipeline
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Add manufacturer name we will use as a string column.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))
manufacturer_encoded = StringIndexer(
    inputCol="manufacturer", outputCol="manufacturer_encoded"
)
encoded_df = manufacturer_encoded.fit(df).transform(df)

# Set up our main ML pipeline.
columns_to_assemble = [
    "manufacturer_encoded",
    "cylinders",
    "displacement",
    "horsepower",
    "weight",
    "acceleration",
]
vector_assembler = VectorAssembler(
    inputCols=columns_to_assemble,
    outputCol="features",
    handleInvalid="skip",
)

# Define the model.
rf = RandomForestRegressor(
    numTrees=20,
    featuresCol="features",
    labelCol="mpg",
)

# Run the pipeline.
pipeline = Pipeline(stages=[vector_assembler, rf])

# Hyperparameter search.
target_metric = "rmse"
paramGrid = (
    ParamGridBuilder().addGrid(rf.numTrees, list(range(20, 100, 10))).build()
)
crossval = CrossValidator(
    estimator=pipeline,
    estimatorParamMaps=paramGrid,
    evaluator=RegressionEvaluator(
        labelCol="mpg", predictionCol="prediction", metricName=target_metric
    ),
    numFolds=2,
    parallelism=4,
)

# Run cross-validation, and choose the best set of parameters.
model = crossval.fit(encoded_df)
real_model = model.bestModel.stages[1]
print("Best model has {} trees.".format(real_model.getNumTrees))
# Code snippet result:
Best model has 80 trees.

Plot Hyperparameter tuning metrics

from pyspark.ml import Pipeline
from pyspark.ml.evaluation import RegressionEvaluator
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType

# Add manufacturer name we will use as a string column.
first_word_udf = udf(lambda x: x.split()[0], StringType())
df = df.withColumn("manufacturer", first_word_udf(df.carname))
manufacturer_encoded = StringIndexer(
    inputCol="manufacturer", outputCol="manufacturer_encoded"
)
encoded_df = manufacturer_encoded.fit(df).transform(df)

# Set up our main ML pipeline.
columns_to_assemble = [
    "manufacturer_encoded",
    "cylinders",
    "displacement",
    "horsepower",
    "weight",
    "acceleration",
]
vector_assembler = VectorAssembler(
    inputCols=columns_to_assemble,
    outputCol="features",
    handleInvalid="skip",
)

# Define the model.
rf = RandomForestRegressor(
    numTrees=20,
    featuresCol="features",
    labelCol="mpg",
)

# Run the pipeline.
pipeline = Pipeline(stages=[vector_assembler, rf])

# Hyperparameter search.
target_metric = "rmse"
paramGrid = (
    ParamGridBuilder().addGrid(rf.numTrees, list(range(20, 100, 10))).build()
)
crossval = CrossValidator(
    estimator=pipeline,
    estimatorParamMaps=paramGrid,
    evaluator=RegressionEvaluator(
        labelCol="mpg", predictionCol="prediction", metricName=target_metric
    ),
    numFolds=2,
    parallelism=4,
)

# Run cross-validation, get metrics for each parameter.
model = crossval.fit(encoded_df)

# Plot results using matplotlib.
import matplotlib

parameter_grid = [
    {k.name: v for k, v in p.items()} for p in model.getEstimatorParamMaps()
]
pdf = pandas.DataFrame(
    model.avgMetrics,
    index=[x["numTrees"] for x in parameter_grid],
    columns=[target_metric],
)
ax = pdf.plot(style="*-")
ax.figure.suptitle("Hyperparameter Search: RMSE by Number of Trees")
ax.figure.savefig("hyperparameters.png")
# Code snippet result:

Hyperparameter Search

A Random Forest Classification model with Hyperparameter Tuning

from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.evaluation import MulticlassClassificationEvaluator
from pyspark.ml.feature import VectorAssembler
from pyspark.ml import Pipeline
from pyspark.ml.tuning import CrossValidator, ParamGridBuilder

label_column = "cover_type"
vector_assembler = VectorAssembler(
    inputCols=df.columns,
    outputCol="features",
    handleInvalid="skip",
)

# Define the model.
rf = RandomForestClassifier(
    numTrees=50,
    featuresCol="features",
    labelCol=label_column,
)

# Run the pipeline.
pipeline = Pipeline(stages=[vector_assembler, rf])

# Hyperparameter search.
paramGrid = (
    ParamGridBuilder().addGrid(rf.numTrees, list(range(50, 80, 10))).build()
)
crossval = CrossValidator(
    estimator=pipeline,
    estimatorParamMaps=paramGrid,
    evaluator=MulticlassClassificationEvaluator(
        labelCol=label_column, predictionCol="prediction"
    ),
    numFolds=2,
    parallelism=4,
)

# Run cross-validation and choose the best set of parameters.
model = crossval.fit(df)

# Identify the best hyperparameters.
real_model = model.bestModel.stages[1]
print("Best model has {} trees.".format(real_model.getNumTrees))

Compute correlation matrix

from pyspark.ml.feature import VectorAssembler
from pyspark.ml.stat import Correlation

# Remove non-numeric columns.
df = df.drop("carname")

# Assemble all columns except mpg into a vector.
feature_columns = list(df.columns)
feature_columns.remove("mpg")
vector_col = "features"
vector_assembler = VectorAssembler(
    inputCols=feature_columns,
    outputCol=vector_col,
    handleInvalid="skip",
)
df_vector = vector_assembler.transform(df).select(vector_col)

# Compute the correlation matrix.
matrix = Correlation.corr(df_vector, vector_col)
corr_array = matrix.collect()[0]["pearson({})".format(vector_col)].toArray()

# This part is just for pretty-printing.
pdf = pandas.DataFrame(
    corr_array, index=feature_columns, columns=feature_columns
)
# Code snippet result:
              cylinders  displacement  horsepower  ...  acceleration  modelyear    origin
cylinders      1.000000      0.950823    0.842983  ...     -0.504683  -0.345647 -0.568932
displacement   0.950823      1.000000    0.897257  ...     -0.543800  -0.369855 -0.614535
horsepower     0.842983      0.897257    1.000000  ...     -0.689196  -0.416361 -0.455171
weight         0.897527      0.932994    0.864538  ...     -0.416839  -0.309120 -0.585005
acceleration  -0.504683     -0.543800   -0.689196  ...      1.000000   0.290316  0.212746
modelyear     -0.345647     -0.369855   -0.416361  ...      0.290316   1.000000  0.181528
origin        -0.568932     -0.614535   -0.455171  ...      0.212746   0.181528  1.000000

[7 rows x 7 columns]

Performance

A few performance tips and tricks.

Get the Spark version

print(spark.sparkContext.version)
# Code snippet result:
3.1.2

Cache a DataFrame

from pyspark import StorageLevel
from pyspark.sql.functions import lit

# Make some copies of the DataFrame.
df1 = df.where(lit(1) > lit(0))
df2 = df.where(lit(2) > lit(0))
df3 = df.where(lit(3) > lit(0))

print("Show the default storage level (NONE).")
print(df.storageLevel)

print("\nChange storage level to Memory/Disk via the cache shortcut.")
df1.cache()
print(df1.storageLevel)

print(
    "\nChange storage level to the equivalent of cache using an explicit StorageLevel."
)
df2.persist(storageLevel=StorageLevel(True, True, False, True, 1))
print(df2.storageLevel)

print("\nSet storage level to NONE using an explicit StorageLevel.")
df3.persist(storageLevel=StorageLevel(False, False, False, False, 1))
print(df3.storageLevel)
# Code snippet result:
Show the default storage level (NONE).
Serialized 1x Replicated

Change storage level to Memory/Disk via the cache shortcut.
Disk Memory Deserialized 1x Replicated

Change storage level to the equivalent of cache using an explicit StorageLevel.
Disk Memory Deserialized 1x Replicated

Set storage level to NONE using an explicit StorageLevel.
Serialized 1x Replicated

Partition by a Column Value

# rows is an iterable, e.g. itertools.chain
def number_in_partition(rows):
    try:
        first_row = next(rows)
        partition_size = sum(1 for x in rows) + 1
        partition_value = first_row.modelyear
        print(f"Partition {partition_value} has {partition_size} records")
    except StopIteration:
        print("Empty partition")

df = df.repartition(20, "modelyear")
df.foreachPartition(number_in_partition)
# Code snippet result:
Partition 82 has 31 records
Partition 76 has 34 records
Partition 77 has 28 records
Partition 80 has 29 records
Partition 81 has 29 records
Partition 70 has 29 records
Partition 72 has 55 records
Partition 78 has 36 records
Empty partition
Empty partition
Empty partition
Partition 75 has 30 records
Empty partition
Partition 71 has 68 records
Partition 79 has 29 records
Empty partition
Empty partition
Empty partition
Empty partition
Empty partition

Range Partition a DataFrame

from pyspark.sql.functions import col

# rows is an iterable, e.g. itertools.chain
def count_in_partition(rows):
    my_years = set()
    number_in_partition = 0
    for row in rows:
        my_years.add(row.modelyear)
        number_in_partition += 1
    seen_years = sorted(list(my_years))
    if len(seen_years) > 0:
        seen_values = ",".join(seen_years)
        print(
            f"This partition has {number_in_partition} records with years {seen_values}"
        )
    else:
        print("Empty partition")

number_of_partitions = 5
df = df.repartitionByRange(number_of_partitions, col("modelyear"))
df.foreachPartition(count_in_partition)
# Code snippet result:

This partition has 60 records with years 81,82
This partition has 62 records with years 76,77
This partition has 85 records with years 70,71,72
This partition has 97 records with years 73,74,75
This partition has 94 records with years 78,79,80

Change Number of DataFrame Partitions

from pyspark.sql.functions import col

df = df.repartition(col("modelyear"))
number_of_partitions = 5
df = df.repartitionByRange(number_of_partitions, col("mpg"))
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
|15.0|        8|       383.0|     170.0| 3563.|        10.0|       70|     1|dodge c...|
|14.0|        8|       340.0|     160.0| 3609.|         8.0|       70|     1|plymout...|
|15.0|        8|       400.0|     150.0| 3761.|         9.5|       70|     1|chevrol...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Coalesce DataFrame partitions

import math

target_partitions = math.ceil(df.rdd.getNumPartitions() / 2)
df = df.coalesce(target_partitions)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|18.0|        8|       307.0|     130.0| 3504.|        12.0|       70|     1|chevrol...|
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|18.0|        8|       318.0|     150.0| 3436.|        11.0|       70|     1|plymout...|
|16.0|        8|       304.0|     150.0| 3433.|        12.0|       70|     1|amc reb...|
|17.0|        8|       302.0|     140.0| 3449.|        10.5|       70|     1|ford to...|
|15.0|        8|       429.0|     198.0| 4341.|        10.0|       70|     1|ford ga...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       440.0|     215.0| 4312.|         8.5|       70|     1|plymout...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|15.0|        8|       390.0|     190.0| 3850.|         8.5|       70|     1|amc amb...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Set the number of shuffle partitions

# Default shuffle partitions is usually 200.
grouped1 = df.groupBy("cylinders").count()
print("{} partition(s)".format(grouped1.rdd.getNumPartitions()))

# Set the shuffle partitions to 20.
# This can reduce the number of files generated when saving DataFrames.
spark.conf.set("spark.sql.shuffle.partitions", 20)

grouped2 = df.groupBy("cylinders").count()
print("{} partition(s)".format(grouped2.rdd.getNumPartitions()))
# Code snippet result:
200 partition(s)
20 partition(s)

Sample a subset of a DataFrame

df = (
    spark.read.format("csv")
    .option("header", True)
    .load("data/auto-mpg.csv")
    .sample(0.1)
)
# Code snippet result:
+----+---------+------------+----------+------+------------+---------+------+----------+
| mpg|cylinders|displacement|horsepower|weight|acceleration|modelyear|origin|   carname|
+----+---------+------------+----------+------+------------+---------+------+----------+
|15.0|        8|       350.0|     165.0| 3693.|        11.5|       70|     1|buick s...|
|14.0|        8|       454.0|     220.0| 4354.|         9.0|       70|     1|chevrol...|
|14.0|        8|       455.0|     225.0| 4425.|        10.0|       70|     1|pontiac...|
|14.0|        8|       455.0|     225.0| 3086.|        10.0|       70|     1|buick e...|
|24.0|        4|       113.0|     95.00| 2372.|        15.0|       70|     3|toyota ...|
|21.0|        6|       200.0|     85.00| 2587.|        16.0|       70|     1|ford ma...|
|19.0|        6|       250.0|     88.00| 3302.|        15.5|       71|     1|ford to...|
|23.0|        4|       122.0|     86.00| 2220.|        14.0|       71|     1|mercury...|
|30.0|        4|       79.00|     70.00| 2074.|        19.5|       71|     2|peugeot...|
|25.0|        4|       97.50|     80.00| 2126.|        17.0|       72|     1|dodge c...|
+----+---------+------------+----------+------+------------+---------+------+----------+
only showing top 10 rows

Print Spark configuration properties

print(spark.sparkContext.getConf().getAll())
# Code snippet result:
[('spark.driver.memory', '2G'), ('spark.files', 'file:///Users/cshankli/.ivy2/jars/io.delta_delta-core_2.12-1.0.0.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-runtime-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr-runtime-3.5.2.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_ST4-4.0.8.jar,file:///Users/cshankli/.ivy2/jars/org.abego.treelayout_org.abego.treelayout.core-1.0.3.jar,file:///Users/cshankli/.ivy2/jars/org.glassfish_javax.json-1.0.4.jar,file:///Users/cshankli/.ivy2/jars/com.ibm.icu_icu4j-58.2.jar'), ('spark.jars', 'file:///Users/cshankli/.ivy2/jars/io.delta_delta-core_2.12-1.0.0.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-runtime-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr-runtime-3.5.2.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_ST4-4.0.8.jar,file:///Users/cshankli/.ivy2/jars/org.abego.treelayout_org.abego.treelayout.core-1.0.3.jar,file:///Users/cshankli/.ivy2/jars/org.glassfish_javax.json-1.0.4.jar,file:///Users/cshankli/.ivy2/jars/com.ibm.icu_icu4j-58.2.jar'), ('spark.driver.port', '60367'), ('spark.executor.memory', '2G'), ('spark.repl.local.jars', 'file:///Users/cshankli/.ivy2/jars/io.delta_delta-core_2.12-1.0.0.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-runtime-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr-runtime-3.5.2.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_ST4-4.0.8.jar,file:///Users/cshankli/.ivy2/jars/org.abego.treelayout_org.abego.treelayout.core-1.0.3.jar,file:///Users/cshankli/.ivy2/jars/org.glassfish_javax.json-1.0.4.jar,file:///Users/cshankli/.ivy2/jars/com.ibm.icu_icu4j-58.2.jar'), ('spark.executor.id', 'driver'), ('spark.app.startTime', '1630704028858'), ('spark.submit.pyFiles', '/Users/cshankli/.ivy2/jars/io.delta_delta-core_2.12-1.0.0.jar,/Users/cshankli/.ivy2/jars/org.antlr_antlr4-4.7.jar,/Users/cshankli/.ivy2/jars/org.antlr_antlr4-runtime-4.7.jar,/Users/cshankli/.ivy2/jars/org.antlr_antlr-runtime-3.5.2.jar,/Users/cshankli/.ivy2/jars/org.antlr_ST4-4.0.8.jar,/Users/cshankli/.ivy2/jars/org.abego.treelayout_org.abego.treelayout.core-1.0.3.jar,/Users/cshankli/.ivy2/jars/org.glassfish_javax.json-1.0.4.jar,/Users/cshankli/.ivy2/jars/com.ibm.icu_icu4j-58.2.jar'), ('spark.sql.extensions', 'io.delta.sql.DeltaSparkSessionExtension'), ('spark.rdd.compress', 'True'), ('spark.app.initial.file.urls', 'file:///Users/cshankli/.ivy2/jars/org.glassfish_javax.json-1.0.4.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr-runtime-3.5.2.jar,file:///Users/cshankli/.ivy2/jars/org.abego.treelayout_org.abego.treelayout.core-1.0.3.jar,file:///Users/cshankli/.ivy2/jars/com.ibm.icu_icu4j-58.2.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-4.7.jar,file:///Users/cshankli/.ivy2/jars/io.delta_delta-core_2.12-1.0.0.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_antlr4-runtime-4.7.jar,file:///Users/cshankli/.ivy2/jars/org.antlr_ST4-4.0.8.jar'), ('spark.serializer.objectStreamReset', '100'), ('spark.master', 'local[*]'), ('spark.submit.deployMode', 'client'), ('spark.app.id', 'local-1630704029931'), ('spark.app.initial.jar.urls', 'spark://192.168.1.197:60367/jars/io.delta_delta-core_2.12-1.0.0.jar,spark://192.168.1.197:60367/jars/org.antlr_antlr-runtime-3.5.2.jar,spark://192.168.1.197:60367/jars/com.ibm.icu_icu4j-58.2.jar,spark://192.168.1.197:60367/jars/org.abego.treelayout_org.abego.treelayout.core-1.0.3.jar,spark://192.168.1.197:60367/jars/org.antlr_antlr4-4.7.jar,spark://192.168.1.197:60367/jars/org.glassfish_javax.json-1.0.4.jar,spark://192.168.1.197:60367/jars/org.antlr_antlr4-runtime-4.7.jar,spark://192.168.1.197:60367/jars/org.antlr_ST4-4.0.8.jar'), ('spark.driver.host', '192.168.1.197'), ('spark.app.name', 'cheatsheet'), ('spark.ui.showConsoleProgress', 'true'), ('spark.sql.warehouse.dir', 'file:///Users/cshankli/git/pyspark-cheatsheet/spark_warehouse'), ('spark.jars.packages', 'io.delta:delta-core_2.12:1.0.0'), ('spark.sql.catalog.spark_catalog', 'org.apache.spark.sql.delta.catalog.DeltaCatalog')]

Set Spark configuration properties

key = "spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version"
value = 2

# Wrong! Settings cannot be changed this way.
# spark.sparkContext.getConf().set(key, value)

# Correct.
spark.conf.set(key, value)

# Alternatively: Set at build time.
# Some settings can only be made at build time.
spark_builder = SparkSession.builder.appName("My App")
spark_builder.config(key, value)
spark = spark_builder.getOrCreate()

Increase Spark driver/executor heap space

# Memory configuration depends entirely on your runtime.
# In OCI Data Flow you control memory by selecting a larger or smaller VM.
# No other configuration is needed.
#
# For other environments see the Spark "Cluster Mode Overview" to get started.
# https://spark.apache.org/docs/latest/cluster-overview.html
# And good luck!
Owner
Carter Shanklin
Add a bio
Carter Shanklin
Clases y ejercicios del curso de python diactodo por la UNSAM

Programación en Python En el marco del proyecto de Inteligencia Artificial Interdisciplinaria, la Escuela de Ciencia y Tecnología de la UNSAM vuelve a

Maximiliano Villalva 3 Jan 06, 2022
Comprehensive Python Cheatsheet

Comprehensive Python Cheatsheet Download text file, Buy PDF, Fork me on GitHub or Check out FAQ. Contents 1. Collections: List, Dictionary, Set, Tuple

Jefferson 1 Jan 23, 2022
charcade is a string manipulation library that can animate, color, and bruteforce strings

charcade charcade is a string manipulation library that can animate, color, and bruteforce strings. Features Animating text for CLI applications with

Aaron 8 May 23, 2022
YAML metadata extension for Python-Markdown

YAML metadata extension for Python-Markdown This extension adds YAML meta data handling to markdown with all YAML features. As in the original, metada

Nikita Sivakov 14 Dec 30, 2022
Get link preview of a website.

Preview Link You may have seen a preview of a link with a title, image, domain, and description when you share a link on social media. This preview ha

SREEHARI K.V 8 Jan 08, 2023
30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days

30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace.

Asabeneh 17.7k Jan 07, 2023
API spec validator and OpenAPI document generator for Python web frameworks.

API spec validator and OpenAPI document generator for Python web frameworks.

1001001 249 Dec 22, 2022
Deduplicating archiver with compression and authenticated encryption.

More screencasts: installation, advanced usage What is BorgBackup? BorgBackup (short: Borg) is a deduplicating backup program. Optionally, it supports

BorgBackup 9k Jan 09, 2023
Generate modern Python clients from OpenAPI

openapi-python-client Generate modern Python clients from OpenAPI 3.x documents. This generator does not support OpenAPI 2.x FKA Swagger. If you need

555 Jan 02, 2023
Sphinx theme for readthedocs.org

Read the Docs Sphinx Theme This Sphinx theme was designed to provide a great reader experience for documentation users on both desktop and mobile devi

Read the Docs 4.3k Dec 31, 2022
Python Eacc is a minimalist but flexible Lexer/Parser tool in Python.

Python Eacc is a parsing tool it implements a flexible lexer and a straightforward approach to analyze documents.

Iury de oliveira gomes figueiredo 60 Nov 16, 2022
Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane.

Xanadu Quantum Codebook The Xanadu Quantum Codebook is an experimental, exercise-based introduction to quantum computing using PennyLane. This reposit

Xanadu 43 Dec 09, 2022
Python Programming (Practical) (1-25) Download 👇🏼

BCA-603 : Python Programming (Practical) (1-25) Download zip 🙂 🌟 How to run programs : Clone or download this repo to your computer. Unzip (If you d

Milan Jadav 2 Jun 02, 2022
Que es S4K Builder?, Fácil un constructor de tokens grabbers con muchas opciones, como BTC Miner, Clipper, shutdown PC, Y más! Disfrute el proyecto. <3

S4K Builder Este script Python 3 de código abierto es un constructor del muy popular registrador de tokens que está en [mi GitHub] (https://github.com

SadicX 1 Oct 22, 2021
DeltaPy - Tabular Data Augmentation (by @firmai)

DeltaPy⁠⁠ — Tabular Data Augmentation & Feature Engineering Finance Quant Machine Learning ML-Quant.com - Automated Research Repository Introduction T

Derek Snow 470 Dec 28, 2022
An MkDocs plugin that simplifies configuring page titles and their order

MkDocs Awesome Pages Plugin An MkDocs plugin that simplifies configuring page titles and their order The awesome-pages plugin allows you to customize

Lukas Geiter 282 Dec 28, 2022
In this Github repository I will share my freqtrade files with you. I want to help people with this repository who don't know Freqtrade so much yet.

My Freqtrade stuff In this Github repository I will share my freqtrade files with you. I want to help people with this repository who don't know Freqt

Simon Kebekus 104 Dec 31, 2022
Sane and flexible OpenAPI 3 schema generation for Django REST framework.

drf-spectacular Sane and flexible OpenAPI 3.0 schema generation for Django REST framework. This project has 3 goals: Extract as much schema informatio

T. Franzel 1.4k Jan 08, 2023
A Python validator for SHACL

pySHACL A Python validator for SHACL. This is a pure Python module which allows for the validation of RDF graphs against Shapes Constraint Language (S

RDFLib 187 Dec 29, 2022
A Json Schema Generator

JSON Schema Generator Author : Eru Michael About A Json Schema Generator. This is a generic program that: Reads a JSON file similar to what's present

1 Nov 10, 2021