Management Dashboard for Torchserve

Overview

Torchserve Dashboard

Total Downloads

Torchserve Dashboard using Streamlit

Related blog post

Demo

Usage

Additional Requirement: torchserve (recommended:v0.5.2)

Simply run:

pip3 install torchserve-dashboard --user
# torchserve-dashboard [streamlit_options(optional)] -- [config_path(optional)] [model_store(optional)] [log_location(optional)] [metrics_location(optional)]
torchserve-dashboard
#OR change port 
torchserve-dashboard --server.port 8105 -- --config_path ./torchserve.properties
#OR provide a custom configuration 
torchserve-dashboard -- --config_path ./torchserve.properties --model_store ./model_store

Keep in mind that If you change any of the --config_path,--model_store,--metrics_location,--log_location options while there is a torchserver already running before starting torch-dashboard they won't come into effect until you stop&start torchserve. These options are used instead of their respective environment variables TS_CONFIG_FILE, METRICS_LOCATION, LOG_LOCATION.

OR

git clone https://github.com/cceyda/torchserve-dashboard.git
streamlit run torchserve_dashboard/dash.py 
#OR
streamlit run torchserve_dashboard/dash.py --server.port 8105 -- --config_path ./torchserve.properties 

Example torchserve config:

inference_address=http://127.0.0.1:8443
management_address=http://127.0.0.1:8444
metrics_address=http://127.0.0.1:8445
grpc_inference_port=7070
grpc_management_port=7071
number_of_gpu=0
batch_size=1
model_store=./model_store

If the server doesn't start for some reason check if your ports are already in use!

Updates

[15-oct-2020] add scale workers tab

[16-feb-2021] (functionality) make logpath configurable,(functionality)remove model_name requirement,(UI)add cosmetic error messages

[10-may-2021] update config & make it optional. update streamlit. Auto create folders

[31-may-2021] Update to v0.4 (Add workflow API) Refactor out streamlit from api.py.

[30-nov-2021] Update to v0.5, adding support for encrypted model serving (not tested). Update streamlit to v1+

FAQs

  • Does torchserver keep running in the background?

    The torchserver is spawned using Popen and keeps running in the background even if you stop the dashboard.

  • What about environment variables?

    These environment variables are passed to the torchserve command:

    ENVIRON_WHITELIST=["LD_LIBRARY_PATH","LC_CTYPE","LC_ALL","PATH","JAVA_HOME","PYTHONPATH","TS_CONFIG_FILE","LOG_LOCATION","METRICS_LOCATION","AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_DEFAULT_REGION"]

  • How to change the logging format of torchserve?

    You can set the location of your custom log4j2 config in your configuration file as in here

    vmargs=-Dlog4j.configurationFile=file:///path/to/custom/log4j2.xml

  • What is the meaning behind the weird versioning?

    The minor follows the compatible torchserve version, patch version reflects the dashboard versioning

Help & Question & Feedback

Open an issue

TODOs

  • Async?
  • Better logging
  • Remote only mode
Comments
  • Update to serve 0.4

    Update to serve 0.4

    I love your project and was hoping we can feature it more prominently in the main torchserve repo - I was wondering if you'd be OK and interested in this. And if so I was wondering if you could give me some feedback on the below

    Installation instructions

    I tried to torchserve-dashboard --server.port 8105 -- --config_path ./torchserve.properties --model_store ./model_store but the page never seems to load regardless of whether I use the network or external url that I have

    I setup a config

    (torchservedashboard) [email protected]:~/torchserve-dashboard$ cat torchserve.properties 
    inference_address=http://127.0.0.1:8443
    management_address=http://127.0.0.1:8444
    metrics_address=http://127.0.0.1:8445
    grpc_inference_port=7070
    grpc_management_port=7071
    number_of_gpu=0
    batch_size=1
    model_store=model_store
    

    But perhaps makes the most sense to just add a default one to the repo so things just work. I'm happy to make the PR just let me know what you suggest. Ideally things just work with zero config and people can come back and change stuff once they feel more comfortable.

    Also on Ubuntu I had to type export PATH="$HOME/.local/bin:$PATH" so I could call torchserve-dashboard

    Features

    Also there's some new features we're excited like the below which would be very interesting to see like

    1. Model interpretability with Captum https://github.com/pytorch/serve/blob/master/captum/Captum_visualization_for_bert.ipynb
    2. Workflow support coming in 0.4 which will allow much more configurable pipelines https://github.com/pytorch/serve/pull/1024/files

    In all cases please let me know if you think we're on the right track and how we can make the torchserve more useful to you. I liked your suggestion on automatic doc generation and it's something I'm looking into so please keep them coming!

    opened by msaroufim 5
  • Improvements of package setup logic

    Improvements of package setup logic

    This PR is related to #1 . It improves the structure of the package setup: All package related info is moved to torchserve_dashboard.init.py.

    Requirement files are added which are split up depending on the usage of the repo/package.

    All functions linked to setup are moved to torchserve_dashboard.setup_tools.py. The function parsing the requirements can handle commented requirements as well as references to github etc (#egg included in requirement)

    opened by FlorianMF 3
  • click >=8 possibly not compatible

    click >=8 possibly not compatible

    Couldn't run the dashboard initially

    Traceback (most recent call last):
      File "/Users/me/Desktop/pytorch-mnist/venv/bin/torchserve-dashboard", line 8, in <module>
        sys.exit(main())
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 1137, in __call__
        return self.main(*args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 1062, in main
        rv = self.invoke(ctx)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 1404, in invoke
        return ctx.invoke(self.callback, **ctx.params)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 763, in invoke
        return __callback(*args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/decorators.py", line 26, in new_func
        return f(get_current_context(), *args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/torchserve_dashboard/cli.py", line 16, in main
        ctx.forward(streamlit.cli.main_run, target=filename, args=args, *kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 784, in forward
        return __self.invoke(__cmd, *args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 763, in invoke
        return __callback(*args, **kwargs)
    TypeError: main_run() got multiple values for argument 'target'
    

    After a bit of googling, I found this: https://github.com/rytilahti/python-eq3bt/issues/30

    The default install brought in click==8.0.1. I had to downgrade to 7.1.2 to get past the error.

    opened by jsphweid 1
  • better caching, init option, v0.6 update

    better caching, init option, v0.6 update

    • Better caching using @st.experimental_singleton

      • argument parsing and API class initialization should only happen once (across sessions) on initial load.
      • Should be way better compared to before which ran those functions after each page refresh 😱 Might be optimized further later...need to refactor cli-param parsing/init logic.
    • Added --init option to initialize torchserve on start. as per this issue: https://github.com/cceyda/torchserve-dashboard/issues/16 Use like: torchserve-dashboard --init Although you still have to load the dashboard screen once for it to actually start!

    • Update to match changes in torchserve v0.6

      • there seems to be only one update to ManagementAPI in v0.6 https://github.com/pytorch/serve/pull/1421 which adds ?customized=true option to return custom_metadata in model details. Although the feature seems to be buggy for old .mar files not implementing it. (tested on: https://github.com/pytorch/serve/blob/master/frontend/archive/src/test/resources/models/noop-customized.mar)

      Anyway I added a checkbox (defaulted to False) to return custom_metadata if needed.

    opened by cceyda 0
  • update streamlit version to v1.11.1

    update streamlit version to v1.11.1

    update streamlit version to include security update v1.11.1 Although torchserve-dashboard isn't using any custom components and therefore not effected by it.

    opened by cceyda 0
  • Update to 0.5.0

    Update to 0.5.0

    update torchserve:

    • v0.5
    • add aws encrypted model feature
    • add log-config to options

    update steamlit:

    • v1.2.0 -> drop beta_ prefix
    • drop python 3.6

    https://github.com/cceyda/torchserve-dashboard/issues/13

    opened by cceyda 0
  • Update to v0.4

    Update to v0.4

    • Add workflow management endpoints (untested)
    • Add version check
    • Refactor api.py (remove streamlit)

    Closes: https://github.com/cceyda/torchserve-dashboard/issues/2

    opened by cceyda 0
  • Add workflow Management API

    Add workflow Management API

    Self-todo ETA: june 3rd https://github.com/pytorch/serve/tree/release_0.4.0/examples/Workflows https://github.com/pytorch/serve/blob/release_0.4.0/docs/workflow_management_api.md

    opened by cceyda 0
  • Can't start torchserve-dashboard

    Can't start torchserve-dashboard

    I'm getting this error while on the start

    Traceback (most recent call last):
      File "/home/kavan/.local/bin/torchserve-dashboard", line 5, in <module>
        from torchserve_dashboard.cli import main
      File "/home/kavan/.local/lib/python3.8/site-packages/torchserve_dashboard/cli.py", line 2, in <module>
        import streamlit.cli
      File "/home/kavan/.local/lib/python3.8/site-packages/streamlit/__init__.py", line 49, in <module>
        from streamlit.proto.RootContainer_pb2 import RootContainer
      File "/home/kavan/.local/lib/python3.8/site-packages/streamlit/proto/RootContainer_pb2.py", line 22, in <module>
        create_key=_descriptor._internal_create_key,
    AttributeError: module 'google.protobuf.descriptor' has no attribute '_internal_create_key'
    

    Btw thanks for this awesome lib.

    opened by Kavan72 1
  • Explanations API

    Explanations API

    Mentioned in https://github.com/cceyda/torchserve-dashboard/issues/1 Model interpretability with Captum https://github.com/pytorch/serve/blob/master/captum/Captum_visualization_for_bert.ipynb

    This would be good to add if we end up adding an InferenceAPI

    opened by cceyda 0
  • Inference API

    Inference API

    Moving the discussion from https://github.com/cceyda/torchserve-dashboard/issues/1#issuecomment-863911194 to here

    Current challenges blocking this:

    • there is no way to know the format of the expected request/response. Especially for custom handlers.

    (I prefer not do model_name->type matching manually)

    If a request/response schema is added to the returned OpenAPI definitions, I can probably auto generate something like SwaggerUI.

    opened by cceyda 0
  • Docker container

    Docker container

    I think it would be great for users and for developers to be able to easily share their dashboard or run it in production without deploying via Streamlit. I could add a simple Dockerfile wrapping everything up into a container.

    Torchserve-Dashbord would be to Torchserve what MongoExpress is to MongoDB. Thoughts?

    opened by FlorianMF 3
Releases(v0.6.0)
  • v0.6.0(Aug 1, 2022)

    What's Changed

    • update streamlit version to v1.11.1 by @cceyda in https://github.com/cceyda/torchserve-dashboard/pull/18
    • Better caching using @st.experimental_singleton https://github.com/cceyda/torchserve-dashboard/pull/19
    • Added --init option to initialize torchserve on start https://github.com/cceyda/torchserve-dashboard/pull/19
    • Update to match changes in torchserve v0.6 @cceyda in https://github.com/cceyda/torchserve-dashboard/pull/19

    Full Changelog: https://github.com/cceyda/torchserve-dashboard/compare/v0.5.0...v0.6.0

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Nov 30, 2021)

    Update to v0.5, adding support for encrypted model serving (not tested). Update streamlit to v1+

    What's Changed

    • Improvements of package setup logic by @FlorianMF in https://github.com/cceyda/torchserve-dashboard/pull/5
    • WIP: Add type annotations by @FlorianMF in https://github.com/cceyda/torchserve-dashboard/pull/7
    • Update to 0.5.0 by @cceyda in https://github.com/cceyda/torchserve-dashboard/pull/15

    New Contributors

    • @FlorianMF made their first contribution in https://github.com/cceyda/torchserve-dashboard/pull/5

    Full Changelog: https://github.com/cceyda/torchserve-dashboard/compare/v0.4.0...v0.5.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.3(Jun 12, 2021)

  • v0.3.2(May 9, 2021)

  • v0.3.1(May 9, 2021)

  • v0.2.5(Feb 16, 2021)

  • v0.2.4(Feb 16, 2021)

  • v0.2.3(Oct 15, 2020)

  • v0.2.2(Oct 13, 2020)

  • v0.2.0(Oct 13, 2020)

Owner
Ceyda Cinarel
AI researcher & engineer~ all things NLP 🤖 generative models ★ like trying out new libraries & tools ♥ Python
Ceyda Cinarel
Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Hector Kohler 0 Mar 30, 2022
A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

A curated list of awesome resources related to Semantic Search🔎 and Semantic Similarity tasks.

224 Jan 04, 2023
Winners of the Facebook Image Similarity Challenge

Winners of the Facebook Image Similarity Challenge

DrivenData 111 Jan 05, 2023
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion". Paper link: https://arxiv.org/abs/2111.10

Ziyao Zeng 14 Feb 26, 2022
Existing Literature about Machine Unlearning

Machine Unlearning Papers 2021 Brophy and Lowd. Machine Unlearning for Random Forests. In ICML 2021. Bourtoule et al. Machine Unlearning. In IEEE Symp

Jonathan Brophy 213 Jan 08, 2023
Code for the paper "Relation of the Relations: A New Formalization of the Relation Extraction Problem"

This repo contains the code for the EMNLP 2020 paper "Relation of the Relations: A New Paradigm of the Relation Extraction Problem" (Jin et al., 2020)

YYY 27 Oct 26, 2022
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
DeepDiffusion: Unsupervised Learning of Retrieval-adapted Representations via Diffusion-based Ranking on Latent Feature Manifold

DeepDiffusion Introduction This repository provides the code of the DeepDiffusion algorithm for unsupervised learning of retrieval-adapted representat

4 Nov 15, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Run Keras models in the browser, with GPU support using WebGL

**This project is no longer active. Please check out TensorFlow.js.** The Keras.js demos still work but is no longer updated. Run Keras models in the

Leon Chen 4.9k Dec 29, 2022
Official implementation for paper Render In-between: Motion Guided Video Synthesis for Action Interpolation

Render In-between: Motion Guided Video Synthesis for Action Interpolation [Paper] [Supp] [arXiv] [4min Video] This is the official Pytorch implementat

8 Oct 27, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
Solving SMPL/MANO parameters from keypoint coordinates.

Minimal-IK A simple and naive inverse kinematics solver for MANO hand model, SMPL body model, and SMPL-H body+hand model. Briefly, given joint coordin

Yuxiao Zhou 305 Dec 30, 2022
Implicit MLE: Backpropagating Through Discrete Exponential Family Distributions

torch-imle Concise and self-contained PyTorch library implementing the I-MLE gradient estimator proposed in our NeurIPS 2021 paper Implicit MLE: Backp

UCL Natural Language Processing 249 Jan 03, 2023
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Causal Influence Detection for Improving Efficiency in Reinforcement Learning

Causal Influence Detection for Improving Efficiency in Reinforcement Learning This repository contains the code release for the paper "Causal Influenc

Autonomous Learning Group 21 Nov 29, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022