3D Human Pose Machines with Self-supervised Learning

Overview

3D Human Pose Machines with Self-supervised Learning

Keze Wang, Liang Lin, Chenhan Jiang, Chen Qian, and Pengxu Wei, “3D Human Pose Machines with Self-supervised Learning”. To appear in IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI), 2019.

This repository implements a 3D human pose machine to resolve 3D pose sequence generation for monocular frames, and includes a concise self-supervised correction mechanism to enhance our model by retaining the 3D geometric consistency. The main part is written in C++ and powered by Caffe deep learning toolbox. Another is written in Python and powered by Tensorflow.

Results

We proposed results on the Human3.6M, KTH Football II and MPII dataset.

   

   

   

License

This project is Only released for Academic Research Use.

Get Started

Clone the repo:

git clone https://github.com/chanyn/3Dpose_ssl.git

or directly download from https://www.dropbox.com/s/qycpjinof2ishw9/3Dpose_ssl.tar.gz?dl=0 (including datasets and well-compiled caffe under cuda-8.0)

Our code is organized as follows:

caffe-3dssl/: support caffe
models/: pretrained models and results
prototxt/: network architecture definitions
tensorflow/: code for online refine 
test/: script that run results split by action 
tools/: python and matlab code 

Requirements

  1. NVIDIA GPU and cuDNN are required to have fast speeds. For now, CUDA 8.0 with cuDNN 5.1 has been tested. The other versions should be working.
  2. Caffe Python wrapper is required.
  3. Tensorflow 1.1.0
  4. python 2.7.13
  5. MATLAB
  6. Opencv-python

Installation

  1. Build 3Dssl Caffe

       cd $ROOT/caffe-3dssl    # Follow the Caffe installation instructions here:    #   http://caffe.berkeleyvision.org/installation.html        # If you're experienced with Caffe and have all of the requirements installed    # and your Makefile.config in place, then simply do:    make all -j 8        make pycaffe    

  1. Install Tensorflow

Datasets

  • Human3.6m

  We change annotation of Human3.6m to hold 16 points ( 'RFoot' 'RKnee' 'RHip' 'LHip' 'LKnee' 'LFoot' 'Hip' 'Spine' 'Thorax' 'Head' 'RWrist' 'RElbow'  'RShoulder' 'LShoulder' 'LElbow' 'LWrist') in keeping with MPII.

  We have provided count mean file and protocol #I & protocol #III split list of Human3.6m. Follow Human3.6m website to download videos and API. We split each video per 5 frames, you can directly download processed square data in this link.  And list format of 16skel_train/test_* is [img_path] [P12dx, P12dy, P22dx, P22dy,..., P13dx, P13dy, P13dz, P23dx, P23dy, P23dz,...] clip. Clip = 0 denote reset lstm.

  shell   # files construction   h36m   |_gt # 2d and 3d annotations splited by actions   |_hg2dh36m # 2d estimation predicted by *Hourglass*, 'square' denotes prediction of square image.   |_ours_2d # 2d prediction from our model   |_ours_3d # 3d coarse prediction of *Model Extension: mask3d*   |_16skel_train_2d3d_clip.txt # train list of *Protocol I*   |_16skel_test_2d3d_clip.txt   |_16skel_train_2d3d_p3_clip.txt # train list of *Protocol III*   |_16skel_test_2d3d_p3_clip.txt   |_16point_mean_limb_scaled_max_min.csv #16 points normalize by (x-min) / (max-min)  

  After setting up Human3.6m dataset following its illustration and download the above training/testing list. You should update “root_folder” paths in CAFFE_ROOT/examples/.../*.prototxt for images and annotation director.

  • MPII

  We crop and square single person from  all images and update 2d annotation in train_h36m.txt (resort points according to order of Human3.6m points).

    mkdir data/MPII   cd data/MPII   wget -v https://drive.google.com/open?id=16gQJvf4wHLEconStLOh5Y7EzcnBUhoM-   tar -xzvf MPII_square.tar.gz   rm -f MPII_square.tar.gz  

 

Training

Offline Phase

Our model consists of two cascade modules, so the training phase can be divided into the following steps:

cd CAFFE_ROOT
  1. Pre-train the 2D pose sub-network with MPII. You can follow CPM or Hourglass or other 2D pose estimation method. We provide pretrained CPM-caffemodel. Please put it into CAFFE_ROOT/models/.

  2. Train 2D-to-3D pose transformer module with Human3.6M. And we fix the parameters of the 2D pose sub-network. The corresponding prototxt file is in examples/2D_to_3D/bilstm.prototxt.

       sh examples/2D_to_3D/train.sh    

  1. To train 3D-to-2D pose projector module, we fix the above module weights. And we need in the wild 2D Pose dataset to help training (we choose MPII).

   sh    sh examples/3D_to_2D/train.sh    

  1. Fine-tune the whole model jointly. We provide trained model and coarse prediction of Protocol I and Protocol III.

   sh    sh examples/finetune_whole/train.sh    

  1. Model extension: Add rand mask to relieve model bias. We provide corresponding model files in examples/mask3d.

   sh    sh examples/mask3d/train.sh    

Model Inference

3D-to-2D project module is initialized from the well-trained model, and they will be updated by minimizing the difference between the predicted 2D pose and projected 2D pose.

  shell   # Step1: Download the trained model   cd PROJECT_ROOT   mkdir models   cd models   wget -v https://drive.google.com/open?id=1dMuPuD_JdHuMIMapwE2DwgJ2IGK04xhQ   unzip model_extension_mask3d.zip   rm -r model_extension_mask3d.zip   cd ../     # Step2: save coarse 3D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh . ../models/model_extension_mask3d/mask3d_iter_400000.caffemodel mask3d 5     # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d hourglass  

 

  shell   # Maybe you want to predict 2d.   # The model we use to predict 2d pose is similar to our 3dpredict model without ssl module.   # Or you can use Hourglass(https://github.com/princeton-vl/pose-hg-demo) to predict 2d pose     # Step1.1: Download the trained merge model   cd PROJECT_ROOT   mkdir models && cd models   wget -v https://drive.google.com/open?id=19kTyttzUnm_1_7HEwoNKCXPP2QVo_zcK   unzip our2d.zip   rm -r our2d.zip   # move 2d prototxt to PROJECT_ROOT/test/   mv our2d/2d ../test/   cd ../     # Step1.2: save 2D prediction   cd test   # change 'data_root' in test_human16.sh   # change 'root_folder' in 2d/template_16_merge.prototxt   # test_human16.sh [$1 deploy.prototxt] [$2 trained model] [$3 save dir] [$4 batchsize]   sh test_human16.sh 2d/ ../models/our2d/2d_iter_800000.caffemodel our2d 5   # replace predict 2d pose in data dir or change data_dir in tensorflow/pred_v2.py   mv our2d /data/h36m/ours_2d/bilstm2d-p1-800000       # Step2 is same as above       # Step3: online refine 3D pose prediction   # protocal: 1/3 , default is 1   # pose2d: ours/hourglass/gt, default is ours   # coarse_3d: saved results in Sept2   python pred_v2.py --trained_model ../models/model_extension_mask3d/mask3d-400000.pkl --protocol 1 --data_dir /data/h36m/ --coarse_3d ../test/mask3d --save srr_results --pose2d ours  

 

  • Inference with yourself

  The only difference is that you should transfer caffemodel of 3D-to-2D project module to pkl file. We provide gen_refinepkl.py in tools/.

  sh   # Follow above Step1~2 to produce coarse 3d prediction and 2d pose.   # transfer caffemodel of SRR module to python .pkl file   python tools/gen_refinepkl.py CAFFE_ROOT CAFFEMODEL_DIR --pkl_dir model.pkl     # online refine 3D pose prediction   python pred_v2.py --trained_model model.pkl  

 

  • Evaluation

  shell   # Print MPJP   run tools/eval_h36m.m     # Visualization of 2dpose/ 3d gt pose/ 3d coarse pose/ 3d refine pose   # Please change data_root in visualization.m before running   run visualization.m  

Citation

@article{wang20193d,
  title={3D Human Pose Machines with Self-supervised Learning},
  author={Wang, Keze and Lin, Liang and Jiang, Chenhan and Qian, Chen and Wei, Pengxu},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  year={2019},
  publisher={IEEE}
}
Owner
Chenhan Jiang
Chenhan Jiang
[CVPR'21] Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration

Locally Aware Piecewise Transformation Fields for 3D Human Mesh Registration This repository contains the implementation of our paper Locally Aware Pi

sfwang 70 Dec 19, 2022
The devkit of the nuPlan dataset.

The devkit of the nuPlan dataset.

Motional 264 Jan 03, 2023
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
An Open-Source Package for Information Retrieval.

OpenMatch An Open-Source Package for Information Retrieval. 😃 What's New Top Spot on TREC-COVID Challenge (May 2020, Round2) The twin goals of the ch

THUNLP 439 Dec 27, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
Python Implementation of the CoronaWarnApp (CWA) Event Registration

Python implementation of the Corona-Warn-App (CWA) Event Registration This is an implementation of the Protocol used to generate event and location QR

MaZderMind 17 Oct 05, 2022
A PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-Supervised Learning Framework".

Mugs: A Multi-Granular Self-Supervised Learning Framework This is a PyTorch implementation of Mugs proposed by our paper "Mugs: A Multi-Granular Self-

Sea AI Lab 62 Nov 08, 2022
RETRO-pytorch - Implementation of RETRO, Deepmind's Retrieval based Attention net, in Pytorch

RETRO - Pytorch (wip) Implementation of RETRO, Deepmind's Retrieval based Attent

Phil Wang 556 Jan 04, 2023
A library for Deep Learning Implementations and utils

deeply A Deep Learning library Table of Contents Features Quick Start Usage License Features Python 2.7+ and Python 3.4+ compatible. Quick Start $ pip

Achilles Rasquinha 1 Dec 12, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Breast-Cancer-Prediction

Breast-Cancer-Prediction Trying to predict whether the cancer is benign or malignant using REGRESSION MODELS in Python. Team Members NAME ROLL-NUMBER

Shyamdev Krishnan J 3 Feb 18, 2022
Source code for PairNorm (ICLR 2020)

PairNorm Official pytorch source code for PairNorm paper (ICLR 2020) This code requires pytorch_geometric=1.3.2 usage For SGC, we use original PairNo

62 Dec 08, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022
🕹️ Official Implementation of Conditional Motion In-betweening (CMIB) 🏃

Conditional Motion In-Betweening (CMIB) Official implementation of paper: Conditional Motion In-betweeening. Paper(arXiv) | Project Page | YouTube in-

Jihoon Kim 81 Dec 22, 2022
Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information"

Repo for paper "Dynamic Placement of Rapidly Deployable Mobile Sensor Robots Using Machine Learning and Expected Value of Information" Notes I probabl

Berkeley Expert System Technologies Lab 0 Jul 01, 2021
Pytorch implementation for M^3L

Learning to Generalize Unseen Domains via Memory-based Multi-Source Meta-Learning for Person Re-Identification (CVPR 2021) Introduction This is the Py

Yuyang Zhao 45 Dec 26, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023