A collection of robust and fast processing tools for parsing and analyzing web archive data.

Overview

ChatNoir Resiliparse

Build Wheels Codecov Documentation Status

A collection of robust and fast processing tools for parsing and analyzing web archive data.

Resiliparse is part of the ChatNoir web analytics toolkit. If you use ChatNoir or any of its tools for a publication, you can make us happy by citing our ECIR demo paper:

@InProceedings{bevendorff:2018,
  address =             {Berlin Heidelberg New York},
  author =              {Janek Bevendorff and Benno Stein and Matthias Hagen and Martin Potthast},
  booktitle =           {Advances in Information Retrieval. 40th European Conference on IR Research (ECIR 2018)},
  editor =              {Leif Azzopardi and Allan Hanbury and Gabriella Pasi and Benjamin Piwowarski},
  ids =                 {potthast:2018c,stein:2018c},
  month =               mar,
  publisher =           {Springer},
  series =              {Lecture Notes in Computer Science},
  site =                {Grenoble, France},
  title =               {{Elastic ChatNoir: Search Engine for the ClueWeb and the Common Crawl}},
  year =                2018
}

Usage Instructions

For detailed information about the build process, dependencies, APIs, or usage instructions, please read the Resiliparse Documentation

Resiliparse Module Summary

The Resiliparse collection encompasses the following two modules at the moment:

1. Resiliparse

The Resiliparse main module with the following subcomponents:

Parsing Utilities

The Resiliparse Parsing Utilities are the largest submodule and provide an extensive (and growing) collection of efficient tools for dealing with encodings and raw protocol payloads, parsing HTML web pages, and preparing them for further processing by extracting structural or semantic information.

Main documentation: Resiliparse Parsing Utilities

Process Guards

The Resiliparse Process Guard module is a set of decorators and context managers for guarding a processing context to stay within pre-defined limits for execution time and memory usage. Process Guards help to ensure the (partially) successful completion of batch processing jobs in which individual tasks may time out or use abnormal amounts of memory, but in which the success of the whole job is not threatened by (a few) individual failures. A guarded processing context will be interrupted upon exceeding its resource limits so that the task can be skipped or rescheduled.

Main documentation: Resiliparse Process Guards

Itertools

Resiliparse Itertools are a collection of convenient and robust helper functions for iterating over data from unreliable sources using other tools from the Resiliparse toolkit.

Main documentation: Resiliparse Itertools

2. FastWARC

FastWARC is a high-performance WARC parsing library for Python written in C++/Cython. The API is inspired in large parts by WARCIO, but does not aim at being a drop-in replacement. FastWARC supports compressed and uncompressed WARC/1.0 and WARC/1.1 streams. Supported compression algorithms are GZip and LZ4.

Main documentation: FastWARC and FastWARC CLI

Installation

The main Resiliparse package can be installed from PyPi as follows:

pip install resiliparse

FastWARC is being distributed as its own package and can be installed like so:

pip install fastwarc

For optimal performance, however, it is recommended to build FastWARC from sources instead of relying on the pre-built binaries. See below for more information.

Building From Source

To build Resiliparse or FastWARC from sources, you need to install all required build-time dependencies first. On Ubuntu, this is done as follows:

# Add Lexbor repository
curl -L https://lexbor.com/keys/lexbor_signing.key | sudo apt-key add -
echo "deb https://packages.lexbor.com/ubuntu/ $(lsb_release -sc) liblexbor" | \
    sudo tee /etc/apt/sources.list.d/lexbor.list

# Install build dependencies
sudo apt update
sudo apt install build-essential python3-dev zlib1g-dev \
    liblz4-dev libuchardet-dev liblexbor-dev

Then, to build the actual packages, run:

# Optional: Create a fresh venv first
python3 -m venv venv && source venv/bin/activate

# Build and install Resiliparse
pip install -e resiliparse

# Build and install FastWARC
pip install -e fastwarc

Instead of building the packages from this repository, you can also build them from the PyPi source packages:

# Build Resiliparse from PyPi
pip install --no-binary resiliparse resiliparse

# Build FastWARC from PyPi
pip install --no-binary fastwarc fastwarc
Owner
ChatNoir
ChatNoir Research Web Search Engine
ChatNoir
collect training and calibration data for gaze tracking

Collect Training and Calibration Data for Gaze Tracking This tool allows collecting gaze data necessary for personal calibration or training of eye-tr

Pascal 5 Dec 17, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Find exposed data in Azure with this public blob scanner

BlobHunter A tool for scanning Azure blob storage accounts for publicly opened blobs. BlobHunter is a part of "Hunting Azure Blobs Exposes Millions of

CyberArk 250 Jan 03, 2023
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner.

CaterApp is a cross platform, remotely data sharing tool created for sharing files in a quick and secured manner. It is aimed to integrate this tool with several more features including providing a U

Ravi Prakash 3 Jun 27, 2021
SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

SNV Pipeline SNV calling pipeline developed explicitly to process individual or trio vcf files obtained from Illumina based pipeline (grch37/grch38).

East Genomics 1 Nov 02, 2021
Repository created with LinkedIn profile analysis project done

EN/en Repository created with LinkedIn profile analysis project done. The datase

Mayara Canaver 4 Aug 06, 2022
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Package for decomposing EMG signals into motor unit firings, as used in Formento et al 2021.

EMGDecomp Package for decomposing EMG signals into motor unit firings, created for Formento et al 2021. Based heavily on Negro et al, 2016. Supports G

13 Nov 01, 2022
Scraping and analysis of leetcode-compensations page.

Leetcode compensations report Scraping and analysis of leetcode-compensations page.

utsav 96 Jan 01, 2023
ETL pipeline on movie data using Python and postgreSQL

Movies-ETL ETL pipeline on movie data using Python and postgreSQL Overview This project consisted on a automated Extraction, Transformation and Load p

Juan Nicolas Serrano 0 Jul 07, 2021
Python Practicum - prepare for your Data Science interview or get a refresher.

Python-Practicum Python Practicum - prepare for your Data Science interview or get a refresher. Data Data visualization using data on births from the

Jovan Trajceski 1 Jul 27, 2021
Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Hue Editor: Open source SQL Query Assistant for Databases/Warehouses

Cloudera 759 Jan 07, 2023
PyTorch implementation for NCL (Neighborhood-enrighed Contrastive Learning)

NCL (Neighborhood-enrighed Contrastive Learning) This is the official PyTorch implementation for the paper: Zihan Lin*, Changxin Tian*, Yupeng Hou* Wa

RUCAIBox 73 Jan 03, 2023
Intercepting proxy + analysis toolkit for Second Life compatible virtual worlds

Hippolyzer Hippolyzer is a revival of Linden Lab's PyOGP library targeting modern Python 3, with a focus on debugging issues in Second Life-compatible

Salad Dais 6 Sep 01, 2022
DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN

DenseClus is a Python module for clustering mixed type data using UMAP and HDBSCAN. Allowing for both categorical and numerical data, DenseClus makes it possible to incorporate all features in cluste

Amazon Web Services - Labs 53 Dec 08, 2022
This repo contains a simple but effective tool made using python which can be used for quality control in statistical approach.

📈 Statistical Quality Control 📉 This repo contains a simple but effective tool made using python which can be used for quality control in statistica

SasiVatsal 8 Oct 18, 2022
The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

The OHSDI OMOP Common Data Model allows for the systematic analysis of healthcare observational databases.

Bell Eapen 14 Jan 02, 2023
A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

TennisBusinessIntelligenceProject - A project consists in a set of assignements corresponding to a BI process: data integration, construction of an OLAP cube, qurying of a OPLAP cube and reporting.

carlo paladino 1 Jan 02, 2022