Transformer Tracking (CVPR2021)

Related tags

Deep LearningTransT
Overview

TransT - Transformer Tracking [CVPR2021]

Official implementation of the TransT (CVPR2021) , including training code and trained models.

We are revising the paper and will upload it in the next week

Results

Model LaSOT
AUC (%)
TrackingNet
AUC (%)
GOT-10k
AO (%)
OTB100
AUC (%)
NFS
AUC (%)
UAV123
AUC (%)
Speed
Params
TransT-N2 64.2 80.9 69.9 69.3 65.4 66.0 65.6fps 16.7M
TransT-N4 64.9 81.4 72.3 69.0 65.3 68.1 47.3fps 23.0M

Installation

This document contains detailed instructions for installing the necessary dependencied for TransT. The instructions have been tested on Ubuntu 18.04 system.

Install dependencies

  • Create and activate a conda environment

    conda create -n transt python=3.7
    conda activate transt
  • Install PyTorch

    conda install -c pytorch pytorch=1.5 torchvision=0.6.1 cudatoolkit=10.2
  • Install other packages

    conda install matplotlib pandas tqdm
    pip install opencv-python tb-nightly visdom scikit-image tikzplotlib gdown
    conda install cython scipy
    pip install pycocotools jpeg4py
    pip install wget yacs
    pip install shapely==1.6.4.post2
  • Setup the environment
    Create the default environment setting files.

    # Change directory to <PATH_of_TransT>
    cd TransT
    
    # Environment settings for pytracking. Saved at pytracking/evaluation/local.py
    python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()"
    
    # Environment settings for ltr. Saved at ltr/admin/local.py
    python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"

You can modify these files to set the paths to datasets, results paths etc.

  • Add the project path to environment variables
    Open ~/.bashrc, and add the following line to the end. Note to change <path_of_TransT> to your real path.
    export PYTHONPATH=<path_of_TransT>:$PYTHONPATH
    
  • Download the pre-trained networks
    Download the network for TransT and put it in the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.

Quick Start

Traning

  • Modify local.py to set the paths to datasets, results paths etc.
  • Runing the following commands to train the TransT. You can customize some parameters by modifying transt.py
    conda activate transt
    cd TransT/ltr
    python run_training.py transt transt

Evaluation

  • We integrated PySOT for evaluation.

    You need to specify the path of the model and dataset in the test.py.

    net_path = '/path_to_model' #Absolute path of the model
    dataset_root= '/path_to_datasets' #Absolute path of the datasets

    Then run the following commands.

    conda activate TransT
    cd TransT
    python -u pysot_toolkit/test.py --dataset <name of dataset> --name 'transt' #test tracker #test tracker
    python pysot_toolkit/eval.py --tracker_path results/ --dataset <name of dataset> --num 1 --tracker_prefix 'transt' #eval tracker

    The testing results will in the current directory(results/dataset/transt/)

  • You can also use pytracking to test and evaluate tracker. The results might be slightly different with PySOT due to the slight difference in implementation (pytracking saves results as integers, pysot toolkit saves the results as decimals).

Acknowledgement

This is a modified version of the python framework PyTracking based on Pytorch, also borrowing from PySOT and detr. We would like to thank their authors for providing great frameworks and toolkits.

Contact

  • Xin Chen (email:[email protected])

    Feel free to contact me if you have additional questions.

Owner
chenxin
Master Student of Dalian University of Technology
chenxin
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Official implementation of "SinIR: Efficient General Image Manipulation with Single Image Reconstruction" (ICML 2021)

SinIR (Official Implementation) Requirements To install requirements: pip install -r requirements.txt We used Python 3.7.4 and f-strings which are in

47 Oct 11, 2022
Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21

MonoFlex Released code for Objects are Different: Flexible Monocular 3D Object Detection, CVPR21. Work in progress. Installation This repo is tested w

Yunpeng 169 Dec 06, 2022
Hummingbird compiles trained ML models into tensor computation for faster inference.

Hummingbird Introduction Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to se

Microsoft 3.1k Dec 30, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
这是一个deeplabv3-plus-pytorch的源码,可以用于训练自己的模型。

DeepLabv3+:Encoder-Decoder with Atrous Separable Convolution语义分割模型在Pytorch当中的实现 目录 性能情况 Performance 所需环境 Environment 注意事项 Attention 文件下载 Download 训练步骤

Bubbliiiing 350 Dec 28, 2022
DeLag: Detecting Latency Degradation Patterns in Service-based Systems

DeLag: Detecting Latency Degradation Patterns in Service-based Systems Replication package of the work "DeLag: Detecting Latency Degradation Patterns

SEALABQualityGroup @ University of L'Aquila 2 Mar 24, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Migration of Edge-based Distributed Federated Learning

FedFly: Towards Migration in Edge-based Distributed Federated Learning About the research Due to mobility, a device participating in Federated Learnin

qub-blesson 11 Nov 13, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Summary of related papers on visual attention

This repo is built for paper: Attention Mechanisms in Computer Vision: A Survey paper Vision-Attention-Papers Channel attention Spatial attention Temp

MenghaoGuo 2.1k Dec 30, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Pure python PEMDAS expression solver without using built-in eval function

pypemdas Pure python PEMDAS expression solver without using built-in eval function. Supports nested parenthesis. Supported operators: + - * / ^ Exampl

1 Dec 22, 2021
Train an imgs.ai model on your own dataset

imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings.

Fabian Offert 5 Dec 21, 2021
This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation

SO-Pose This repository contains codes of ICCV2021 paper: SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation This paper is basically an

shangbuhuan 52 Nov 25, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
Implementation of CVPR 2020 Dual Super-Resolution Learning for Semantic Segmentation

Dual super-resolution learning for semantic segmentation 2021-01-02 Subpixel Update Happy new year! The 2020-12-29 update of SISR with subpixel conv p

Sam 79 Nov 24, 2022