Audio Visual Emotion Recognition using TDA

Overview

Audio Visual Emotion Recognition using TDA

RAVDESS database with two datasets analyzed: Video and Audio dataset:

Audio-Dataset: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Video-Dataset: https://zenodo.org/record/1188976#.X7yio2hKjIU

The Final Master project PDF document is available here.

Folder Video_Dataset:

Dataset used is available in this url https://zenodo.org/record/1188976#.X7yio2hKjIU The algorithm works in this order:

  1. delaunay_construction.m: The first step of the algorithm in order to build the Delaunay triangulation in every video associated from dataset, remind that we have videos of 24 people and for each person 60 videos associated to 8 emotions. The first step is to defines the pathdata where it is the dataset address, that it is in format csv with the landmark point of the face. The coordinate of point X is is between position 2:297 and Y from 138:416 return the Delaunay_base, the struct that we will use in the code.

  2. complex_filtration.m: After get the delaunay_construction, we apply complex_filtration(Delaunay). The input is the Delaunay triangulation, in this code we built the complexes using the triangulation, taking the edges which form the squares and used them to form the square in every frame. We are working with 9 frames and this function calls the filtration function. Then, this function the return the complex asociated to each video, and the index position where each 3-cell is formed in the complex

2.1. filtrations.m This function obtains 8 border simplicial complexes filtered, from 4 view directions, 2 by each direction.We applied a set of function in order to get the different complex, as you can see the funcion return Complex X in the direction of axis X, Complex X in direction of Y, Complex XY, Complex YX in diagonal direction and the same complex with the order inverted.

2.2. complex_wtsquare.m In this function we are going to split the complexes which form every cell to see the features which born and died in the same square on the complex.

  1. WORKFLOW.m One time that we have the complexes build, we are going to apply the Incremental Algorithm (Persistence_new) used in this thesis, the Incremental algorithm was implemented in C++ using differente topology libraries which offer this language. Then we get the barcode or persistence diagram associated to each filter complex obtained at begining. In this function we apply also the function (per_entropy) to summarise the information from the persistence diagram

Load each complex and its index and apply:

3.1 complex2matrix.py: converts the complex obtained for the ATR model applied in matricial way as we explained on the thesis(page 50).

3.2 Persistence_new: ATR model defined in C++ to calculate the persisten homology and get the barcode or persistence diagrams associated with each filtration of the complex. The psuedo-code of the algorithm you will find on the thesis.

3.3 create_matrix.m: Built the different matrix based on persistence value to classify.

  1. experiment: the first experiment done based on the entropy values of video, but it sets each filtration compex that we get, then for that we worked with vector of eight elements associated to each filtration. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  2. experiment3: Experiment that construct the matrix with the information of each persisten value associate with one filtration of the complex calculated. Later this matrix is splitted in training and test set in order to use APP Classificator from Matlab and gets the accuracy.

  3. feature24_vector.m: experiment done considering a vector of 24 features for each person. in this experiment we dont get good results.

Folder Audio Dataset:

In this url yo can finde the Audio-Dataset used for this implementation, the formal of the files are in .wav: https://www.kaggle.com/uwrfkaggler/ravdess-emotional-speech-audio

Experiment 1

  1. work_flow.py focuses on the first experiment, load data that will be used in the script, and initialize the dataframe to fill.

1.1 test.py using function emotions to get the embedder and duration in seconds of each audio signal. Read the audio and create the time array (timeline), resample the signal, get the optimal parameter delay, apply the emmbedding algorithm

1.2 get_parameters.py function to get the optimal parameter for taken embedding, which contains datDelayInformation for mutual information, false_nearest_neighours for embedding dimension.

1.3 TakensEmbedding: This function returns the Takens embedding of data with a delay into a dimension

1.4 per_entropy.py: Computes the persistence entropy of a set of intervals according to the diagrama obtained.

1.5 get_diagramas.py used to apply Vietoris-Rips filter and get the persisten_entropy values.

  1. machine_learning.py is used to define classification techniques in the set of entropy values. Create training and test splits. Import the KNeighborsClassifier from library. The parameter K is to plot in graph with corresponding error rate for dataset and calculate the mean of error for all the predicted values where K ranges from 1 to 40.

Experment 2

  1. Work_flow2.py: Second experiment, using function emotions_second to obtain the resampled signal, get_diag2 from test.py to calculates the Vietoris-Rips filter.

  2. machine_learning_second: To construct a distance matrix of persistence diagrams (Bottleneck distance). Upload the csv prueba5.csv that contains the label of the emotion associated to each rows of the matrix. Create the fake data matrix: just the indices of the timeseries. Import the KNeighborsClassifier from library. For evaluating the algorithm, confusion matrix, precision, recall and f1 score are the most commonly used. Testing different classifier to see what is the best one. GaussianNB; DecisionTreeClassifier, knn and SVC.

4.1 my_dist: To get the distance bottleneck between diagrams, function that we use to built the matrix of distance, that will be the input of the KNN algorithm.

Classification folder

In this folder, the persistent entropy matrixes and classification experiments using neural networks for video-only and audiovideo datasets are provided.

Owner
Combinatorial Image Analysis research group
Combinatorial Image Analysis research group
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
PyTorch implementation of adversarial patch

adversarial-patch PyTorch implementation of adversarial patch This is an implementation of the Adversarial Patch paper. Not official and likely to hav

Jamie Hayes 172 Nov 29, 2022
Graph Robustness Benchmark: A scalable, unified, modular, and reproducible benchmark for evaluating the adversarial robustness of Graph Machine Learning.

Homepage | Paper | Datasets | Leaderboard | Documentation Graph Robustness Benchmark (GRB) provides scalable, unified, modular, and reproducible evalu

THUDM 66 Dec 22, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning"

Prompt-Tuning Implementation of "The Power of Scale for Parameter-Efficient Prompt Tuning" Currently, we support the following huggigface models: Bart

Andrew Zeng 36 Dec 19, 2022
DRIFT is a tool for Diachronic Analysis of Scientific Literature.

About DRIFT is a tool for Diachronic Analysis of Scientific Literature. The application offers user-friendly and customizable utilities for two modes:

Rajaswa Patil 108 Dec 12, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Generative Art Using Neural Visual Grammars and Dual Encoders

Generative Art Using Neural Visual Grammars and Dual Encoders Arnheim 1 The original algorithm from the paper Generative Art Using Neural Visual Gramm

DeepMind 231 Jan 05, 2023
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021))

PTvsBT On the Complementarity between Pre-Training and Back-Translation for Neural Machine Translation (Findings of EMNLP 2021) Citation Please cite a

Sunbow Liu 10 Nov 25, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
This repo implements a 3D segmentation task for an airport baggage dataset.

3D CT Scan Segmentation With Occupancy Network This repo implements a 3D superresolution segmentation task for an airport baggage dataset. Our final p

Christoph Reich 2 Mar 28, 2022
Implementation of TimeSformer, a pure attention-based solution for video classification

TimeSformer - Pytorch Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification.

Phil Wang 602 Jan 03, 2023