Bundle Graph Convolutional Network

Overview

Bundle Graph Convolutional Network

This is our Pytorch implementation for the paper:

Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bundle Graph Convolutional Network, Paper in ACM DL or Paper in arXiv. In SIGIR'20, Xi'an, China, July 25-30, 2020.

Author: Jianxin Chang ([email protected])

Introduction

Bundle Graph Convolutional Network (BGCN) is a bundle recommendation solution based on graph neural network, explicitly re-constructing the two kinds of interaction and an affiliation into the graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{BGCN20,
  author    = {Jianxin Chang and 
               Chen Gao and 
               Xiangnan He and 
               Depeng Jin and 
               Yong Li},
  title     = {Bundle Recommendation with Graph Convolutional Networks},
  booktitle = {Proceedings of the 43nd International {ACM} {SIGIR} Conference on
               Research and Development in Information Retrieval, {SIGIR} 2020, Xi'an,
               China, July 25-30, 2020.},
  year      = {2020},
}

Requirement

The code has been tested running under Python 3.7.0. The required packages are as follows:

  • torch == 1.2.0
  • numpy == 1.17.4
  • scipy == 1.4.1
  • temsorboardX == 2.0

Usage

The hyperparameter search range and optimal settings have been clearly stated in the codes (see the 'CONFIG' dict in config.py).

  • Train
python main.py 
  • Futher Train

Replace 'sample' from 'simple' to 'hard' in CONFIG and add model file path obtained by Train to 'conti_train', then run

python main.py 
  • Test

Add model path obtained by Futher Train to 'test' in CONFIG, then run

python eval_main.py 

Some important hyperparameters:

  • lrs

    • It indicates the learning rates.
    • The learning rate is searched in {1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3}.
  • mess_dropouts

    • It indicates the message dropout ratio, which randomly drops out the outgoing messages.
    • We search the message dropout within {0, 0.1, 0.3, 0.5}.
  • node_dropouts

    • It indicates the node dropout ratio, which randomly blocks a particular node and discard all its outgoing messages.
    • We search the node dropout within {0, 0.1, 0.3, 0.5}.
  • decays

    • we adopt L2 regularization and use the decays to control the penalty strength.
    • L2 regularization term is tuned in {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2}.
  • hard_window

    • It indicates the difficulty of sampling in the hard-negative sampler.
    • We set it to the top thirty percent.
  • hard_prob

    • It indicates the probability of using hard-negative samples in the further training stage.
    • We set it to 0.8 (0.4 in the item level and 0.4 in the bundle level), so the probability of simple samples is 0.2.

Dataset

We provide one processed dataset: Netease.

  • user_bundle_train.txt

    • Train file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_item.txt

    • Train file.
    • Each line is 'userID\t itemID\n'.
    • Every observed interaction means user u once interacted item i.
  • bundle_item.txt

    • Train file.
    • Each line is 'bundleID\t itemID\n'.
    • Every entry means bundle b contains item i.
  • Netease_data_size.txt

    • Assist file.
    • The only line is 'userNum\t bundleNum\t itemNum\n'.
    • The triplet denotes the number of users, bundles and items, respectively.
  • user_bundle_tune.txt

    • Tune file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_bundle_test.txt

    • Test file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
Owner
M.S. student from E.E., Tsinghua University.
Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks

SR-HGNN ICDM-2020 《Global Context Enhanced Social Recommendation with Hierarchical Graph Neural Networks》 Environments python 3.8 pytorch-1.6 DGL 0.5.

xhc 9 Nov 12, 2022
E-Commerce recommender demo with real-time data and a graph database

🔍 E-Commerce recommender demo 🔍 This is a simple stream setup that uses Memgraph to ingest real-time data from a simulated online store. Data is str

g-despot 3 Feb 23, 2022
Detecting Beneficial Feature Interactions for Recommender Systems, AAAI 2021

Detecting Beneficial Feature Interactions for Recommender Systems (L0-SIGN) This is our implementation for the paper: Su, Y., Zhang, R., Erfani, S., &

26 Nov 22, 2022
Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

57 Nov 03, 2022
A TensorFlow recommendation algorithm and framework in Python.

TensorRec A TensorFlow recommendation algorithm and framework in Python. NOTE: TensorRec is not under active development TensorRec will not be receivi

James Kirk 1.2k Jan 04, 2023
ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms

ToR[e]cSys is a PyTorch Framework to implement recommendation system algorithms, including but not limited to click-through-rate (CTR) prediction, learning-to-ranking (LTR), and Matrix/Tensor Embeddi

LI, Wai Yin 90 Oct 08, 2022
A framework for large scale recommendation algorithms.

A framework for large scale recommendation algorithms.

Alibaba Group - PAI 880 Jan 03, 2023
A movie recommender which recommends the movies belonging to the genre that user has liked the most.

Content-Based-Movie-Recommender-System This model relies on the similarity of the items being recommended. (I have used Pandas and Numpy. However othe

Srinivasan K 0 Mar 31, 2022
The implementation of the submitted paper "Deep Multi-Behaviors Graph Network for Voucher Redemption Rate Prediction" in SIGKDD 2021 Applied Data Science Track.

DMBGN: Deep Multi-Behaviors Graph Networks for Voucher Redemption Rate Prediction The implementation of the accepted paper "Deep Multi-Behaviors Graph

10 Jul 12, 2022
Spark-movie-lens - An on-line movie recommender using Spark, Python Flask, and the MovieLens dataset

A scalable on-line movie recommender using Spark and Flask This Apache Spark tutorial will guide you step-by-step into how to use the MovieLens datase

Jose A Dianes 794 Dec 23, 2022
A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (WSDM 2021)

FairGNN A PyTorch implementation of "Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information" (

31 Jan 04, 2023
Code for ICML2019 Paper "Compositional Invariance Constraints for Graph Embeddings"

Dependencies NOTE: This code has been updated, if you were using this repo earlier and experienced issues that was due to an outaded codebase. Please

Avishek (Joey) Bose 43 Nov 25, 2022
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
The official implementation of "DGCN: Diversified Recommendation with Graph Convolutional Networks" (WWW '21)

DGCN This is the official implementation of our WWW'21 paper: Yu Zheng, Chen Gao, Liang Chen, Depeng Jin, Yong Li, DGCN: Diversified Recommendation wi

FIB LAB, Tsinghua University 37 Dec 18, 2022
Codes for AAAI'21 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'

DHCN Codes for AAAI 2021 paper 'Self-Supervised Hypergraph Convolutional Networks for Session-based Recommendation'. Please note that the default link

Xin Xia 124 Dec 14, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Elliot is a comprehensive recommendation framework that analyzes the recommendation problem from the researcher's perspective.

Comprehensive and Rigorous Framework for Reproducible Recommender Systems Evaluation

Information Systems Lab @ Polytechnic University of Bari 215 Nov 29, 2022
A Library for Field-aware Factorization Machines

Table of Contents ================= - What is LIBFFM - Overfitting and Early Stopping - Installation - Data Format - Command Line Usage - Examples -

1.6k Dec 05, 2022
Implementation of a hadoop based movie recommendation system

Implementation-of-a-hadoop-based-movie-recommendation-system 通过编写代码,设计一个基于Hadoop的电影推荐系统,通过此推荐系统的编写,掌握在Hadoop平台上的文件操作,数据处理的技能。windows 10 hadoop 2.8.3 p

汝聪(Ricardo) 5 Oct 02, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 43 Jan 04, 2023