Bundle Graph Convolutional Network

Overview

Bundle Graph Convolutional Network

This is our Pytorch implementation for the paper:

Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin and Yong Li. Bundle Graph Convolutional Network, Paper in ACM DL or Paper in arXiv. In SIGIR'20, Xi'an, China, July 25-30, 2020.

Author: Jianxin Chang ([email protected])

Introduction

Bundle Graph Convolutional Network (BGCN) is a bundle recommendation solution based on graph neural network, explicitly re-constructing the two kinds of interaction and an affiliation into the graph. With item nodes as the bridge, graph convolutional propagation between user and bundle nodes makes the learned representations capture the item level semantics.

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{BGCN20,
  author    = {Jianxin Chang and 
               Chen Gao and 
               Xiangnan He and 
               Depeng Jin and 
               Yong Li},
  title     = {Bundle Recommendation with Graph Convolutional Networks},
  booktitle = {Proceedings of the 43nd International {ACM} {SIGIR} Conference on
               Research and Development in Information Retrieval, {SIGIR} 2020, Xi'an,
               China, July 25-30, 2020.},
  year      = {2020},
}

Requirement

The code has been tested running under Python 3.7.0. The required packages are as follows:

  • torch == 1.2.0
  • numpy == 1.17.4
  • scipy == 1.4.1
  • temsorboardX == 2.0

Usage

The hyperparameter search range and optimal settings have been clearly stated in the codes (see the 'CONFIG' dict in config.py).

  • Train
python main.py 
  • Futher Train

Replace 'sample' from 'simple' to 'hard' in CONFIG and add model file path obtained by Train to 'conti_train', then run

python main.py 
  • Test

Add model path obtained by Futher Train to 'test' in CONFIG, then run

python eval_main.py 

Some important hyperparameters:

  • lrs

    • It indicates the learning rates.
    • The learning rate is searched in {1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3}.
  • mess_dropouts

    • It indicates the message dropout ratio, which randomly drops out the outgoing messages.
    • We search the message dropout within {0, 0.1, 0.3, 0.5}.
  • node_dropouts

    • It indicates the node dropout ratio, which randomly blocks a particular node and discard all its outgoing messages.
    • We search the node dropout within {0, 0.1, 0.3, 0.5}.
  • decays

    • we adopt L2 regularization and use the decays to control the penalty strength.
    • L2 regularization term is tuned in {1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2}.
  • hard_window

    • It indicates the difficulty of sampling in the hard-negative sampler.
    • We set it to the top thirty percent.
  • hard_prob

    • It indicates the probability of using hard-negative samples in the further training stage.
    • We set it to 0.8 (0.4 in the item level and 0.4 in the bundle level), so the probability of simple samples is 0.2.

Dataset

We provide one processed dataset: Netease.

  • user_bundle_train.txt

    • Train file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_item.txt

    • Train file.
    • Each line is 'userID\t itemID\n'.
    • Every observed interaction means user u once interacted item i.
  • bundle_item.txt

    • Train file.
    • Each line is 'bundleID\t itemID\n'.
    • Every entry means bundle b contains item i.
  • Netease_data_size.txt

    • Assist file.
    • The only line is 'userNum\t bundleNum\t itemNum\n'.
    • The triplet denotes the number of users, bundles and items, respectively.
  • user_bundle_tune.txt

    • Tune file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
  • user_bundle_test.txt

    • Test file.
    • Each line is 'userID\t bundleID\n'.
    • Every observed interaction means user u once interacted bundle b.
Owner
M.S. student from E.E., Tsinghua University.
Recommender System Papers

Included Conferences: SIGIR 2020, SIGKDD 2020, RecSys 2020, CIKM 2020, AAAI 2021, WSDM 2021, WWW 2021

RUCAIBox 704 Jan 06, 2023
Plex-recommender - Get movie recommendations based on your current PleX library

plex-recommender Description: Get movie/tv recommendations based on your current

5 Jul 19, 2022
Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Transformer

Introduction This is the repository of our accepted CIKM 2021 paper "Continuous-Time Sequential Recommendation with Temporal Graph Collaborative Trans

SeqRec 29 Dec 09, 2022
Graph Neural Network based Social Recommendation Model. SIGIR2019.

Basic Information: This code is released for the papers: Le Wu, Peijie Sun, Yanjie Fu, Richang Hong, Xiting Wang and Meng Wang. A Neural Influence Dif

PeijieSun 144 Dec 29, 2022
大规模推荐算法库,包含推荐系统经典及最新算法LR、Wide&Deep、DSSM、TDM、MIND、Word2Vec、DeepWalk、SSR、GRU4Rec、Youtube_dnn、NCF、GNN、FM、FFM、DeepFM、DCN、DIN、DIEN、DLRM、MMOE、PLE、ESMM、MAML、xDeepFM、DeepFEFM、NFM、AFM、RALM、Deep Crossing、PNN、BST、AutoInt、FGCNN、FLEN、ListWise等

(中文文档|简体中文|English) 什么是推荐系统? 推荐系统是在互联网信息爆炸式增长的时代背景下,帮助用户高效获得感兴趣信息的关键; 推荐系统也是帮助产品最大限度吸引用户、留存用户、增加用户粘性、提高用户转化率的银弹。 有无数优秀的产品依靠用户可感知的推荐系统建立了良好的口碑,也有无数的公司依

3.6k Dec 30, 2022
Incorporating User Micro-behaviors and Item Knowledge 59 60 3 into Multi-task Learning for Session-based Recommendation

MKM-SR Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation Paper data and code This is the

ciecus 38 Dec 05, 2022
Cloud-based recommendation system

This project is based on cloud services to create data lake, ETL process, train and deploy learning model to implement a recommendation system.

Yi Ding 1 Feb 02, 2022
RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation

RetaGNN: Relational Temporal Attentive Graph Neural Networks for Holistic Sequential Recommendation Pytorch based implemention of Relational Temporal

28 Dec 28, 2022
A library of Recommender Systems

A library of Recommender Systems This repository provides a summary of our research on Recommender Systems. It includes our code base on different rec

MilaGraph 980 Jan 05, 2023
Spotify API Recommnder System

This project will access your last listened songs on Spotify using its API, then it will request the user to select 5 favorite songs in that list, on which the API will proceed to make 50 recommendat

Kevin Luke 1 Dec 14, 2021
Cross-Domain Recommendation via Preference Propagation GraphNet.

PPGN Codes for CIKM 2019 paper Cross-Domain Recommendation via Preference Propagation GraphNet. Citation Please cite our paper if you find this code u

Information Retrieval Group, Wuhan University, China 20 Dec 15, 2022
NVIDIA Merlin is an open source library designed to accelerate recommender systems on NVIDIA’s GPUs.

NVIDIA Merlin is an open source library providing end-to-end GPU-accelerated recommender systems, from feature engineering and preprocessing to training deep learning models and running inference in

420 Jan 04, 2023
A library of metrics for evaluating recommender systems

recmetrics A python library of evalulation metrics and diagnostic tools for recommender systems. **This library is activly maintained. My goal is to c

Claire Longo 458 Jan 06, 2023
Learning Fair Representations for Recommendation: A Graph-based Perspective, WWW2021

FairGo WWW2021 Learning Fair Representations for Recommendation: A Graph-based Perspective As a key application of artificial intelligence, recommende

lei 39 Oct 26, 2022
EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON

exemplo-de-sistema-especialista EXEMPLO DE SISTEMA ESPECIALISTA PARA RECOMENDAR SERIADOS EM PYTHON Resumo O objetivo de auxiliar o usuário na escolha

Josue Lopes 3 Aug 31, 2021
Approximate Nearest Neighbors in C++/Python optimized for memory usage and loading/saving to disk

Annoy Annoy (Approximate Nearest Neighbors Oh Yeah) is a C++ library with Python bindings to search for points in space that are close to a given quer

Spotify 10.6k Jan 01, 2023
Code for my ORSUM, ACM RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation

HeroGRAPH Code for my ORSUM @ RecSys 2020, HeroGRAPH: A Heterogeneous Graph Framework for Multi-Target Cross-Domain Recommendation Paper, workshop pro

Qiang Cui 9 Sep 14, 2022
Real time recommendation playground

concierge A continuous learning collaborative filter1 deployed with a light web server2. Distributed updates are live (real time pubsub + delta traini

Mark Essel 16 Nov 07, 2022
Knowledge-aware Coupled Graph Neural Network for Social Recommendation

KCGN AAAI-2021 《Knowledge-aware Coupled Graph Neural Network for Social Recommendation》 Environments python 3.8 pytorch-1.6 DGL 0.5.3 (https://github.

xhc 22 Nov 18, 2022
A tensorflow implementation of the RecoGCN model in a CIKM'19 paper, titled with "Relation-Aware Graph Convolutional Networks for Agent-Initiated Social E-Commerce Recommendation".

This repo contains a tensorflow implementation of RecoGCN and the experiment dataset Running the RecoGCN model python train.py Example training outp

xfl15 30 Nov 25, 2022