TedEval: A Fair Evaluation Metric for Scene Text Detectors

Overview

TedEval: A Fair Evaluation Metric for Scene Text Detectors

Official Python 3 implementation of TedEval | paper | slides

Chae Young Lee, Youngmin Baek, and Hwalsuk Lee.

Clova AI Research, NAVER Corp.

Overview

We propose a new evaluation metric for scene text detectors called TedEval. Through separate instance-level matching policy and character-level scoring policy, TedEval solves the drawbacks of previous metrics such as IoU and DetEval. This code is based on ICDAR15 official evaluation code.

Methodology

1. Mathcing Policy

  • Non-exclusively gathers all possible matches of not only one-to-one but also one-to-many and many-to-one.
  • The threshold of both area recall and area precision are set to 0.4.
  • Multiline is identified and rejected when |min(theta, 180 - theta)| > 45 from Fig. 2.

2. Scoring Policy

We compute Pseudo Character Center (PCC) from word-level bounding boxes and penalize matches when PCCs are missing or overlapping.

Sample Evaluation

Experiments

We evaluated state-of-the-art scene text detectors with TedEval on two benchmark datasets: ICDAR 2013 Focused Scene Text (IC13) and ICDAR 2015 Incidental Scene Text (IC15). Detectors are listed in the order of published dates.

ICDAR 2013

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 82.1 92.7 87.6
RRPN 17/03/03 89.0 94.2 91.6
SegLink 17/03/19 65.6 74.9 70.0
EAST 17/04/11 77.7 87.1 82.5
WordSup 17/08/22 87.5 92.2 90.2
PixelLink 18/01/04 84.0 87.2 86.1
FOTS 18/01/05 91.5 93.0 92.6
TextBoxes++ 18/01/09 87.4 92.3 90.0
MaskTextSpotter 18/07/06 90.2 95.4 92.9
PMTD 19/03/28 94.0 95.2 94.7
CRAFT 19/04/03 93.6 96.5 95.1

ICDAR 2015

Detector Date (YY/MM/DD) Recall (%) Precision (%) H-mean (%)
CTPN 16/09/12 85.0 81.1 67.8
RRPN 17/03/03 79.5 85.9 82.6
SegLink 17/03/19 77.1 83.9 80.6
EAST 17/04/11 82.5 90.0 86.3
WordSup 17/08/22 83.2 87.1 85.2
PixelLink 18/01/04 85.7 86.1 86.0
FOTS 18/01/05 89.0 93.4 91.2
TextBoxes++ 18/01/09 82.4 90.8 86.5
MaskTextSpotter 18/07/06 82.5 91.8 86.9
PMTD 19/03/28 89.2 92.8 91.0
CRAFT 19/04/03 88.5 93.1 90.9

Frequency

Getting Started

Clone repository

git clone https://github.com/clovaai/TedEval.git

Requirements

  • python 3
  • python 3.x Polygon, Bottle, Pillow
# install
pip3 install Polygon3 bottle Pillow

Supported Annotation Type

  • LTRB(xmin, ymin, xmax, ymax)
  • QUAD(x1, y1, x2, y2, x3, y3, x4, y4)

Evaluation

Prepare data

The ground truth and the result data should be text files, one for each sample. Note that the naming rule of each text file is that there must be img_{number} in the filename and that the number indicate the image sample.

# gt/gt_img_38.txt
644,101,932,113,932,168,643,156,[email protected]
477,138,487,139,488,149,477,148,###
344,131,398,130,398,149,344,149,###
1195,148,1277,138,1277,177,1194,187,###
23,270,128,267,128,282,23,284,###

# result/res_img_38.txt
644,101,932,113,932,168,643,156,{Transcription},{Confidence}
477,138,487,139,488,149,477,148
344,131,398,130,398,149,344,149
1195,148,1277,138,1277,177,1194,187
23,270,128,267,128,282,23,284

Compress these text files.

zip gt.zip gt/*
zip result.zip result/*

Refer to gt/result.zip and gt/gt_*.zip for examples.

Run stand-alone evaluation

python script.pyg=gt/gt.zips=result/result.zip
  • Locate the path of GT and submission file using the flag -g and -s, respectively.
  • QUAD annotation type is used as default. To switch between {QUAD, LTRB}, add -p='{"LTRB" = False}' in the command or directly modify the default_evaluation_params() function in script.py.
  • If there are transcription or confidence values in your submission file, add -p='{"CONFIDENCES" = True} or -p='{"TRANSCRIPTION" = True}'.

Run Visualizer

python web.py
  • Place the zip file of images and GTs of the dataset named images.zip and gt.zip, respectively, in the gt directory.
  • Create an empty directory name output. This is where the DB, submission files, and result files will be created.
  • You can change the host and port number in the final line of web.py.

The file structure should then be:

.
├── gt
│   ├── gt.zip
│   └── images.zip
├── output   # empty dir
├── script.py
├── web.py
├── README.md
└── ...

Citation

@article{lee2019tedeval,
  title={TedEval: A Fair Evaluation Metric for Scene Text Detectors},
  author={Lee, Chae Young and Baek, Youngmin and Lee, Hwalsuk},
  journal={arXiv preprint arXiv:1907.01227},
  year={2019}
}

Contact us

We welcome any feedbacks to our metric. Please contact the authors via {cylee7133, youngmin.baek, hwalsuk.lee}@gmail.com. In case of code errors, open an issue and we will get to you.

License

Copyright (c) 2019-present NAVER Corp.

 Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

 The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
Owner
Clova AI Research
Open source repository of Clova AI Research, NAVER & LINE
Clova AI Research
chineseocr/table_line 表格线检测模型pytorch版

table_line_pytorch chineseocr/table_detct 表格线检测模型table_line pytorch版 原项目github: https://github.com/chineseocr/table-detect 1、模型转换 下载原项目table_detect模型文

1 Oct 21, 2021
kaldi-asr/kaldi is the official location of the Kaldi project.

Kaldi Speech Recognition Toolkit To build the toolkit: see ./INSTALL. These instructions are valid for UNIX systems including various flavors of Linux

Kaldi 12.3k Jan 05, 2023
This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the robots of the future.

This is a repository to learn and get more computer vision skills, make robotics projects integrating the computer vision as a perception tool and create a lot of awesome advanced controllers for the

Elkin Javier Guerra Galeano 17 Nov 03, 2022
Captcha Recognition

The objective of this project is to recognize the target numbers in the captcha images correctly which would tell us how good or bad a captcha system has been built.

Mohit Kaushik 5 Feb 20, 2022
Read-only mirror of https://gitlab.gnome.org/GNOME/ocrfeeder

================================= OCRFeeder - A Complete OCR Suite ================================= OCRFeeder is a complete Optical Character Recogn

GNOME Github Mirror 81 Dec 23, 2022
A list of hyperspectral image super-solution resources collected by Junjun Jiang

A list of hyperspectral image super-resolution resources collected by Junjun Jiang. If you find that important resources are not included, please feel free to contact me.

Junjun Jiang 301 Jan 05, 2023
A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

A python script based on opencv and paddleocr, which can automatically pick up tasks, make cookies, and receive rewards in the Destiny 2 Dawning Oven

1 Dec 22, 2021
Open Source Computer Vision Library

OpenCV: Open Source Computer Vision Library Resources Homepage: https://opencv.org Courses: https://opencv.org/courses Docs: https://docs.opencv.org/m

OpenCV 65.7k Jan 03, 2023
Code related to "Have Your Text and Use It Too! End-to-End Neural Data-to-Text Generation with Semantic Fidelity" paper

DataTuner You have just found the DataTuner. This repository provides tools for fine-tuning language models for a task. See LICENSE.txt for license de

81 Jan 01, 2023
Textboxes implementation with Tensorflow (python)

tb_tensorflow A python implementation of TextBoxes Dependencies TensorFlow r1.0 OpenCV2 Code from Chaoyue Wang 03/09/2017 Update: 1.Debugging optimize

Jayne Shin (신재인) 20 May 31, 2019
A simple demo program for using OpenCV on Android

Kivy OpenCV Demo A simple demo program for using OpenCV on Android Build with: buildozer android debug deploy run Run (on desktop) with: python main.p

Andrea Ranieri 13 Dec 29, 2022
YOLOv5 in DOTA with CSL_label.(Oriented Object Detection)(Rotation Detection)(Rotated BBox)

YOLOv5_DOTA_OBB YOLOv5 in DOTA_OBB dataset with CSL_label.(Oriented Object Detection) Datasets and pretrained checkpoint Datasets : DOTA Pretrained Ch

1.1k Dec 30, 2022
基于openpose和图像分类的手语识别项目

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

20 Dec 15, 2022
A simple OCR API server, seriously easy to be deployed by Docker, on Heroku as well

ocrserver Simple OCR server, as a small working sample for gosseract. Try now here https://ocr-example.herokuapp.com/, and deploy your own now. Deploy

Hiromu OCHIAI 541 Dec 28, 2022
Generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv

basic-dataset-generator-from-image-of-numbers generating .npy dataset and labels out of given image, containing numbers from 0 to 9, using opencv inpu

1 Jan 01, 2022
Python rubik's cube solver

This program makes a 3D representation of a rubiks cube and solves it step by step.

Pablo QB 4 May 29, 2022
An interactive interface for using OpenCV's GrabCut algorithm for image segmentation.

Interactive GrabCut An interactive interface for using OpenCV's GrabCut algorithm for image segmentation. Setup Install dependencies: pip install nump

Jason Y. Zhang 16 Oct 10, 2022
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 06, 2023
(CVPR 2021) ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection

ST3D Code release for the paper ST3D: Self-training for Unsupervised Domain Adaptation on 3D Object Detection, CVPR 2021 Authors: Jihan Yang*, Shaoshu

CVMI Lab 224 Dec 28, 2022