Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper.

Overview

EnergyExpenditure

DOI

Code for the "Sensing leg movement enhances wearable monitoring of energy expenditure" paper. Additional data for replicating this study is available: https://simtk.org/projects/energy-est

Please cite this work if you use materials from it:

Slade, P., Kochenderfer, M.J., Delp, S.L. et al. Sensing leg movement enhances wearable monitoring of energy expenditure. Nat Commun 12, 4312 (2021).

This folder contains data, code, and results for validating the Wearable System. The software version, package dependencies, and installation instructions are listed at the bottom of this note.

The code folder contains python notebook files to process the raw validation data and produce energy expenditure estimates (compute_real_time_results.ipynb) and compute the figures from the paper (plots.ipynb). These files are Jupyter Notebook files, detailed instructions on this type of file and how to open them are available (https://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Notebook%20Basics.html). Once the files are open select 'Run' and then 'Run all cells'. The output will appear below each cell. The compute_real_time_results.ipynb will plot the energy expenditure estimates of the Wearable System and raw metabolics measurements as well as the absolute percent error between the steady-state estimates of the Wearable System and metabolics. The plots.ipynb will produce replicates of the images shown in the manuscript for validating the processing of the different methods of estimating energy expenditure. The runtime is approximately 5 minutes on a "normal" desktop.

The real_time_model folder contains the weights for the linear regression model used by the Wearable System and the python file used to estimate energy expenditure in real time on the portable microcontroller (real_time_est.py).

The real_time_validation_data folder contains the metabolics and raw inertial measurement data for one of the validation subjects. This folder will need to be unzipped before being used. Each subject folder contains the raw metabolics data as a .xlsx file and conditions folders. The conditions folders contain the raw inertial measurement data broken into five second increments, stored in sequential 'npy' files. The file_timestamp.csv contains the timestamps when each of the 'npy' files were saved. The energy_exp_estimates.csv contains columns of the time from the start of the condition, date, and energy expenditure in Watts.

The results folder contains the estimates computed from the compute_real_time_results.ipynb to replicate the real-time Wearable System estimates from the validation experiment. The full_data folder contain all the data for the compared methods across all subjects to be able to replicate the figures in the paper.

The full dataset is available to reviewers in a private repository linked in the paper, but was not included in this folder due to size constraints. Upon acceptence this will be published in a public repository. This includes all simulation models, all data from each of the experiments, code to train the energy expenditure models, and processing code to compute estimates from the compared methods (heart rate, smartwatch, etc).

Python version 3.6.1 Modules: pandas (0.25.3) numpy (1.17.4) scikit-learn (0.21.3) scipy (1.3.2) setuptools (27.2.0) natsort (6.2.0) matplotlib (2.0.2) jupyter (1.0.0) ipython (5.3.0)

The installation process for Python and related packages will depend on the users operating system, but should take approximately 10 minutes on a "normal" desktop. See the python package installation guide for instructions: https://packaging.python.org/tutorials/installing-packages/

You might also like...
code for our ICCV 2021 paper
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Dataset and Code for ICCV 2021 paper
Dataset and Code for ICCV 2021 paper "Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme"

Dataset and Code for RealVSR Real-world Video Super-resolution: A Benchmark Dataset and A Decomposition based Learning Scheme Xi Yang, Wangmeng Xiang,

Code for paper "Role-based network embedding via structural features reconstruction with degree-regularized constraint"

Role-based network embedding via structural features reconstruction with degree-regularized constraint Train python main.py --dataset brazil-flights

Code for the paper: Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution

Fusformer Code for the paper: "Fusformer: A Transformer-based Fusion Approach for Hyperspectral Image Super-resolution" Plateform Python 3.8.5 + Pytor

The code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Long-term Action Assessment".

Likert Scoring with Grade Decoupling for Long-term Action Assessment This is the code for CVPR2022 paper "Likert Scoring with Grade Decoupling for Lon

Code for CVPR 2022 paper
Code for CVPR 2022 paper "SoftGroup for Instance Segmentation on 3D Point Clouds"

SoftGroup We provide code for reproducing results of the paper SoftGroup for 3D Instance Segmentation on Point Clouds (CVPR 2022) Author: Thang Vu, Ko

Code for CVPR'2022 paper ✨
Code for CVPR'2022 paper ✨ "Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-Language Model"

PPE ✨ Repository for our CVPR'2022 paper: Predict, Prevent, and Evaluate: Disentangled Text-Driven Image Manipulation Empowered by Pre-Trained Vision-

Code for CVPR 2022 paper
Code for CVPR 2022 paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory"

Bailando Code for CVPR 2022 (oral) paper "Bailando: 3D dance generation via Actor-Critic GPT with Choreographic Memory" [Paper] | [Project Page] | [Vi

Fast image augmentation library and easy to use wrapper around other libraries. Documentation:  https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125
Fast image augmentation library and easy to use wrapper around other libraries. Documentation: https://albumentations.ai/docs/ Paper about library: https://www.mdpi.com/2078-2489/11/2/125

Albumentations Albumentations is a Python library for image augmentation. Image augmentation is used in deep learning and computer vision tasks to inc

Releases(v1.0.0)
Owner
Patrick S
Patrick S
This is a pytorch re-implementation of EAST: An Efficient and Accurate Scene Text Detector.

EAST: An Efficient and Accurate Scene Text Detector Description: This version will be updated soon, please pay attention to this work. The motivation

Dejia Song 544 Dec 20, 2022
A python screen recorder for low-end computers, provides high quality video output.

RecorderX - v1.0 A screen recorder made in Python with the help of OpenCv, it has ability to record your screen in high quality. No matter what your P

Priyanshu Jindal 4 Nov 10, 2021
Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Genalog is an open source, cross-platform python package allowing generation of synthetic document images with custom degradations and text alignment capabilities.

Microsoft 235 Dec 22, 2022
Official code for "Bridging Video-text Retrieval with Multiple Choice Questions", CVPR 2022 (Oral).

Bridging Video-text Retrieval with Multiple Choice Questions, CVPR 2022 (Oral) Paper | Project Page | Pre-trained Model | CLIP-Initialized Pre-trained

Applied Research Center (ARC), Tencent PCG 99 Jan 06, 2023
Resizing Canny Countour In Python

Resizing_Canny_Countour Install Visual Studio Code , https://code.visualstudio.com/download Select Python and install with terminal( pip install openc

Walter Ng 1 Nov 07, 2021
This Repository contain Opencv Projects in python

Python-Opencv OpenCV OpenCV (Open Source Computer Vision Library) is an open source computer vision and machine learning software library. OpenCV was

Yash Sakre 2 Nov 06, 2021
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
Basic functions manipulating images using the OpenCV library

OpenCV Basic functions manipulating images using the OpenCV library. Reading Ima

Shatha Siala 3 Feb 17, 2022
Ocular is a state-of-the-art historical OCR system.

Ocular Ocular is a state-of-the-art historical OCR system. Its primary features are: Unsupervised learning of unknown fonts: requires only document im

228 Dec 30, 2022
pulse2percept: A Python-based simulation framework for bionic vision

pulse2percept: A Python-based simulation framework for bionic vision Retinal degenerative diseases such as retinitis pigmentosa and macular degenerati

67 Dec 29, 2022
A post-processing tool for scanned sheets of paper.

unpaper Originally written by Jens Gulden — see AUTHORS for more information. Licensed under GNU GPL v2 — see COPYING for more information. Overview u

27 Dec 07, 2022
A small C++ implementation of LSTM networks, focused on OCR.

clstm CLSTM is an implementation of the LSTM recurrent neural network model in C++, using the Eigen library for numerical computations. Status and sco

Tom 794 Dec 30, 2022
Learning Camera Localization via Dense Scene Matching, CVPR2021

This repository contains code of our CVPR 2021 paper - "Learning Camera Localization via Dense Scene Matching" by Shitao Tang, Chengzhou Tang, Rui Hua

tangshitao 65 Dec 01, 2022
Code release for Hu et al., Learning to Segment Every Thing. in CVPR, 2018.

Learning to Segment Every Thing This repository contains the code for the following paper: R. Hu, P. Dollár, K. He, T. Darrell, R. Girshick, Learning

Ronghang Hu 417 Oct 03, 2022
OCR powered screen-capture tool to capture information instead of images

NormCap OCR powered screen-capture tool to capture information instead of images. Links: Repo | PyPi | Releases | Changelog | FAQs Content: Quickstart

575 Dec 31, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Python rubik's cube solver

This program makes a 3D representation of a rubiks cube and solves it step by step.

Pablo QB 4 May 29, 2022
1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge

SIIM-COVID19-Detection Source code of the 1st place solution for SIIM-FISABIO-RSNA COVID-19 Detection Challenge. 1.INSTALLATION Ubuntu 18.04.5 LTS CUD

Nguyen Ba Dung 170 Dec 21, 2022
TableBank: A Benchmark Dataset for Table Detection and Recognition

TableBank TableBank is a new image-based table detection and recognition dataset built with novel weak supervision from Word and Latex documents on th

844 Jan 04, 2023