Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

Overview

MKGFormer

Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

Model Architecture

Illustration of MKGformer for (a) Unified Multimodal KGC Framework and (b) Detailed M-Encoder.

Requirements

To run the codes, you need to install the requirements:

pip install -r requirements.txt

Data Collection

The datasets that we used in our experiments are as follows:

  • Twitter2017

    You can download the twitter2017 dataset via this link (https://drive.google.com/file/d/1ogfbn-XEYtk9GpUECq1-IwzINnhKGJqy/view?usp=sharing)

    For more information regarding the dataset, please refer to the UMT repository.

  • MRE

    The MRE dataset comes from MEGA, many thanks.

    You can download the MRE dataset with detected visual objects using folloing command:

    cd MRE
    wget 120.27.214.45/Data/re/multimodal/data.tar.gz
    tar -xzvf data.tar.gz
  • MKG

    • FB15K-237-IMG

      For more information regarding the dataset, please refer to the mmkb and kg-bert repositories.

    • WN18-IMG

      For more information regarding the dataset, please refer to the RSME repository.

The expected structure of files is:

MKGFormer
 |-- MKG	# Multimodal Knowledge Graph
 |    |-- dataset       # task data
 |    |-- data          # data process file
 |    |-- lit_models    # lightning model
 |    |-- models        # mkg model
 |    |-- scripts       # running script
 |    |-- main.py   
 |-- MNER	# Multimodal Named Entity Recognition
 |    |-- data          # task data
 |    |-- models        # mner model
 |    |-- modules       # running script
 |    |-- processor     # data process file
 |    |-- utils
 |    |-- run_mner.sh
 |    |-- run.py
 |-- MRE    # Multimodal Relation Extraction
 |    |-- data          # task data
 |    |-- models        # mre model
 |    |-- modules       # running script
 |    |-- processor     # data process file
 |    |-- run_mre.sh
 |    |-- run.py

How to run

  • MKG Task

    • First run Image-text Incorporated Entity Modeling to train entity embedding.
        cd MKG
        bash scripts/pretrain_fb15k-237-image.sh
    • Then do Missing Entity Prediction.
        bash scripts/fb15k-237-image.sh
  • MNER Task

    To run mner task, run this script.

    cd MNER
    bash run_mner.py
  • MRE Task

    To run mre task, run this script.

    cd MRE
    bash run_mre.py

Acknowledgement

The acquisition of image data for the multimodal link prediction task refer to the code from https://github.com/wangmengsd/RSME, many thanks.

Papers for the Project & How to Cite

If you use or extend our work, please cite the paper as follows:

Owner
ZJUNLP
A NLP & KG Group of Zhejiang University
ZJUNLP
This repository implements Douzero's interface to IGCA.

douzero-interface-for-ICGA This repository implements Douzero's interface to ICGA. ./douzero: This directory stores Doudizhu AI projects. ./interface:

zhanggenjin 4 Aug 07, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
The King is Naked: on the Notion of Robustness for Natural Language Processing

the-king-is-naked: on the notion of robustness for natural language processing AAAI2022 DISCLAIMER:This repo will be updated soon with instructions on

Iperboreo_ 1 Nov 24, 2022
Subgraph Based Learning of Contextual Embedding

SLiCE Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks Dataset details: We use four public benchmark da

Pacific Northwest National Laboratory 27 Dec 01, 2022
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Geometric Deep Learning Extension Library for PyTorch

Documentation | Paper | Colab Notebooks | External Resources | OGB Examples PyTorch Geometric (PyG) is a geometric deep learning extension library for

Matthias Fey 16.5k Jan 08, 2023
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics.

Bonnet: An Open-Source Training and Deployment Framework for Semantic Segmentation in Robotics. By Andres Milioto @ University of Bonn. (for the new P

Photogrammetry & Robotics Bonn 314 Dec 30, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022