Code Implementation of "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Related tags

Text Data & NLPnlp
Overview

Span-ASTE: Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction

***** New March 31th, 2022: Scikit-Style API for Easy Usage *****

PWC Colab Jupyter

This repository implements our ACL 2021 research paper Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction. Our goal is to extract sentiment triplets of the format (aspect target, opinion expression and sentiment polarity), as shown in the diagram below.

Installation

Data Format

Our span-based model uses data files where the format for each line contains one input sentence and a list of output triplets:

sentence#### #### ####[triplet_0, ..., triplet_n]

Each triplet is a tuple that consists of (span_a, span_b, label). Each span is a list. If the span covers a single word, the list will contain only the word index. If the span covers multiple words, the list will contain the index of the first word and last word. For example:

It also has lots of other Korean dishes that are affordable and just as yummy .#### #### ####[([6, 7], [10], 'POS'), ([6, 7], [14], 'POS')]

For prediction, the data can contain the input sentence only, with an empty list for triplets:

sentence#### #### ####[]

Predict Using Model Weights

  • First, download and extract pre-trained weights to pretrained_dir
  • The input data file path_in and output data file path_out have the same data format.
from wrapper import SpanModel

model = SpanModel(save_dir=pretrained_dir, random_seed=0)
model.predict(path_in, path_out)

Model Training

  • Configure the model with save directory and random seed.
  • Start training based on the training and validation data which have the same data format.
model = SpanModel(save_dir=save_dir, random_seed=random_seed)
model.fit(path_train, path_dev)

Model Evaluation

  • From the trained model, predict triplets from the test sentences and output into path_pred.
  • The model includes a scoring function which will provide F1 metric scores for triplet extraction.
model.predict(path_in=path_test, path_out=path_pred)
results = model.score(path_pred, path_test)

Research Citation

If the code is useful for your research project, we appreciate if you cite the following paper:

@inproceedings{xu-etal-2021-learning,
    title = "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction",
    author = "Xu, Lu  and
      Chia, Yew Ken  and
      Bing, Lidong",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.367",
    doi = "10.18653/v1/2021.acl-long.367",
    pages = "4755--4766",
    abstract = "Aspect Sentiment Triplet Extraction (ASTE) is the most recent subtask of ABSA which outputs triplets of an aspect target, its associated sentiment, and the corresponding opinion term. Recent models perform the triplet extraction in an end-to-end manner but heavily rely on the interactions between each target word and opinion word. Thereby, they cannot perform well on targets and opinions which contain multiple words. Our proposed span-level approach explicitly considers the interaction between the whole spans of targets and opinions when predicting their sentiment relation. Thus, it can make predictions with the semantics of whole spans, ensuring better sentiment consistency. To ease the high computational cost caused by span enumeration, we propose a dual-channel span pruning strategy by incorporating supervision from the Aspect Term Extraction (ATE) and Opinion Term Extraction (OTE) tasks. This strategy not only improves computational efficiency but also distinguishes the opinion and target spans more properly. Our framework simultaneously achieves strong performance for the ASTE as well as ATE and OTE tasks. In particular, our analysis shows that our span-level approach achieves more significant improvements over the baselines on triplets with multi-word targets or opinions.",
}
Comments
  • Train model for new data collected from social media

    Train model for new data collected from social media

    Hi, I would like to train this model in a new dataset with another language "Bahasa" as aspects and opinions of them, especially in social media textual data, constitute a span of words with multiple lengths. How to execute the file accordingly?

    opened by Lafandi 7
  • command命令错误

    command命令错误

    {'command': 'cd /home/data2/yj/Span-ASTE && allennlp train outputs/14lap/seed_0/config.jsonnet --serialization-dir outputs/14lap/seed_0/weights --include-package span_model'} /bin/sh: allennlp: 未找到命令,请问这个在什么文件里改,一直没找到。。。

    opened by lzf00 6
  • Retrain with new language

    Retrain with new language

    Hi, I have some questions (sorry if this is some kind of beginners question, I am new in this field). I want to change the word embedder to the BERT that is pretrained with my language (Indonesia, using indobert). Can you give some tips on how to change the embedder to my language? Thanks!

    opened by rdyzakya 5
  • Using the notebook when there is no GPU

    Using the notebook when there is no GPU

    Hello! Thank you for sharing this work! I was wondering how I can use the demo notebook locally when there is no GPU?

    When running the cell under "# Use pretrained SpanModel weights for prediction, " I got this error:

    2022-07-06 12:28:07,840 - INFO - allennlp.common.plugins - Plugin allennlp_models available Traceback (most recent call last): File "/Users/xiaoqingwan/opt/miniconda3/envs/absa/bin/allennlp", line 8, in sys.exit(run()) File "/Users/xiaoqingwan/opt/miniconda3/envs/absa/lib/python3.7/site-packages/allennlp/main.py", line 34, in run main(prog="allennlp") File "/Users/xiaoqingwan/opt/miniconda3/envs/absa/lib/python3.7/site-packages/allennlp/commands/init.py", line 118, in main args.func(args) File "/Users/xiaoqingwan/opt/miniconda3/envs/absa/lib/python3.7/site-packages/allennlp/commands/predict.py", line 205, in _predict predictor = _get_predictor(args) File "/Users/xiaoqingwan/opt/miniconda3/envs/absa/lib/python3.7/site-packages/allennlp/commands/predict.py", line 105, in _get_predictor check_for_gpu(args.cuda_device) File "/Users/xiaoqingwan/opt/miniconda3/envs/absa/lib/python3.7/site-packages/allennlp/common/checks.py", line 131, in check_for_gpu " 'trainer.cuda_device=-1' in the json config file." + torch_gpu_error allennlp.common.checks.ConfigurationError: Experiment specified a GPU but none is available; if you want to run on CPU use the override 'trainer.cuda_device=-1' in the json config file. module 'torch.cuda' has no attribute '_check_driver'

    I changed cuda_device to -1 in the jsonnet files from your folder training_config. But still no luck.

    opened by xiaoqingwan 5
  • Suggestions to run it against other datasets

    Suggestions to run it against other datasets

    Hi! I'm pretty new to deep learning and ASTE.

    Can you please suggest to me the necessary steps to run this against another dataset? Do I need to follow this data structure (https://github.com/xuuuluuu/SemEval-Triplet-data/blob/master/README.md#data-description) on my dataset by labeling it? How can I modify the code on Colab for new datasets? thank you Any other advice?

    Thank you

    opened by Jurys22 4
  • Running problem

    Running problem

    Hello, I have a question, I want to ask you. I use Pycharm to run your project, but report an error in the main.py file, prompt: ModuleNotFoundError: No module named '_jsonnet'. I guess the main reason because import _jsonnet # noqa. Can you tell me a solution? Thank you very much. 微信图片_20211123164149

    opened by FengLingCong13 4
  • Data format

    Data format

    Excuse me,how do you label the data to make the input format be as follows:

    Exactly as posted plus a great value .####Exactly=O as=O posted=O plus=O a=O great=O value=T-POS .=O####Exactly=O as=O posted=O plus=O a=O great=S value=O .=O####[([6], [5], 'POS')] The specs are pretty good too .####The=O specs=T-POS are=O pretty=O good=O too=O .=O####The=O specs=O are=O pretty=O good=S too=O .=O####[([1], [4], 'POS')]

    opened by arroyoaaa 4
  • Interpretation of the results

    Interpretation of the results

    Hello, I was looking at the file in

    /content/Span-ASTE/model_outputs/aste_sample_c7b00b66bf7ec669d23b80879fda043d/predict_dev.jsonl

    I would like to know what are the numbers in the predicted_ner and predicted_relations such as:

    [[0, 0, 1, 1, 'NEG', 2.777, 0.971]]

    What are 2.777 and 0.971 referring to?

    Thank you

    opened by Jurys22 3
  •   I installed the package according to the requirements. I wanted to use the pre trained model to make predictions, but it failed to run.

    I installed the package according to the requirements. I wanted to use the pre trained model to make predictions, but it failed to run.

    I installed the package according to the requirements. I wanted to use the pre trained model to make predictions, but it failed to run. Two error was reported: 1. allennlp.common.checks.ConfigurationError: Extra parameters passed to SpanModel: {'relation_head_type': 'proper', 'use_bilstm_after_embedder': False, 'use_double_mix_embedder': False, 'use_ner_embeds': False} Traceback (most recent call last): File "X:\workspace\python\[email protected]\Span-ASTE\aste\test.py", line 4, in model.predict('test.txt', "pred.txt") File "X:\workspace\python\[email protected]\Span-ASTE\aste\wrapper.py", line 83, in predict with open(path_temp_out) as f: 2. FileNotFoundError: [Errno 2] No such file or directory: 'X:\workspace\python\papercode\@aspect\Span-ASTE\pretrained_dir\temp_data\pred_out.json'

    opened by SiriusXT 2
  • IndexError: List assignment index out of range

    IndexError: List assignment index out of range

    I've annotated my own data and tried to train the model with the annotated data, and run into this error here (see below). The command runs successfully, but the model doesn't train on the annotated data, going into the out.log files we see this error. The annotated data follows the correct format as I'm able to preview it in the Data Exploration command. Any help would be appreciated please! :)

    image

    opened by jasonhuynh83 2
  • No such file or directory: 'pretrained_14res/temp_data/pred_out.json'

    No such file or directory: 'pretrained_14res/temp_data/pred_out.json'

    Installed it successfully in MAC OS but getting the error pred_out.json not found. Not sure why is this working successfully in colab but not when I am installing it in my local machine. Can any one help me . I have downloaded the folder correctly. Contains all the required files. I have tried with 14lap and 14res but both have same issue. Screenshot 2022-09-22 at 7 48 09 PM

    opened by dipanmoy 2
  • python wrapper.py

    python wrapper.py

    hi ,I'm puzzled when running wrapper.py, the following appears which I can't understand NAME wrapper.py

    SYNOPSIS wrapper.py GROUP | COMMAND

    GROUPS GROUP is one of the following:

     json
       JSON (JavaScript Object Notation) <http://json.org> is a subset of JavaScript syntax (ECMA-262 3rd edition) used as a lightweight data interchange format.
    
     os
       OS routines for NT or Posix depending on what system we're on.
    
     shutil
       Utility functions for copying and archiving files and directory trees.
    
     sys
       This module provides access to some objects used or maintained by the interpreter and to functions that interact strongly with the interpreter.
    
     List
       The central part of internal API.
    
     Tuple
       Tuple type; Tuple[X, Y] is the cross-product type of X and Y.
    
     Optional
       Internal indicator of special typing constructs. See _doc instance attribute for specific docs.
    

    COMMANDS COMMAND is one of the following:

     Namespace
       Simple object for storing attributes.
    
     Path
       PurePath subclass that can make system calls.
    
     train_model
       Trains the model specified in the given [`Params`](../common/params.md#params) object, using the data and training parameters also specified in that object, and saves the results in `serialization_dir`
    
    opened by xian-xian 2
  •  ConfigurationError: key

    ConfigurationError: key "dataset_reader" is required

    I was trying to replicate the same to Azure Databricks. While I'm training to train the model, I am getting the "ConfigurationError: key "dataset_reader" is required" error. For your reference

    image image image image

    Is this solution can be implemented in the Databricks environment ? @chiayewken

    opened by tsharisaravanan 1
  • Optional: Set up NLTK packages这个是什么意思呀,可以帮忙讲解一下吗

    Optional: Set up NLTK packages这个是什么意思呀,可以帮忙讲解一下吗

    Optional: Set up NLTK packages

    if [[ -f punkt.zip ]]; then mkdir -p /home/admin/nltk_data/tokenizers cp punkt.zip /home/admin/nltk_data/tokenizers fi if [[ -f wordnet.zip ]]; then mkdir -p /home/admin/nltk_data/corpora cp wordnet.zip /home/admin/nltk_data/corpora fi 不明白这个什么意思,研一学生求求了

    opened by xian-xian 5
  • An error for Posixpath

    An error for Posixpath

    Hi, I have some questions to ask you.

    The params_file is a string type, but this error has occurred as follow:

    Traceback (most recent call last): File "/Span-ASTE-main/aste/wrapper.py", line 177, in model.fit(path_train, path_dev) File "/Span-ASTE-main/aste/wrapper.py", line 54, in fit test_data_path=str(self.save_temp_data(path_dev, "dev")), File "/lib/python3.7/site-packages/allennlp/common/params.py", line 462, in from_file file_dict = json.loads(evaluate_file(params_file, ext_vars=ext_vars)) TypeError: argument 1 must be str, not PosixPath

    By the way, what should I start your code, the "main.py" or "wrapper.py".

    opened by Chen-PengF 1
  • demo file not working, No module named 'data_utils', No module named 'data_utils'

    demo file not working, No module named 'data_utils', No module named 'data_utils'

    Hi,

    I tried to run the demo file, but it shows error of "No module named 'data_utils'". The error coming from the line "No module named 'data_utils'"

    opened by qi-xia 1
Owner
Chia Yew Ken
Hi! I'm a 2nd year PhD Student with SUTD and Alibaba. My research interests currently include zero-shot learning, structured prediction and sentiment analysis.
Chia Yew Ken
NLP techniques such as named entity recognition, sentiment analysis, topic modeling, text classification with Python to predict sentiment and rating of drug from user reviews.

This file contains the following documents sumbited for Baruch CIS9665 group 9 fall 2021. 1. Dataset: drug_reviews.csv 2. python codes for text classi

Aarif Munwar Jahan 2 Jan 04, 2023
Grading tools for Advanced NLP (11-711)Grading tools for Advanced NLP (11-711)

Grading tools for Advanced NLP (11-711) Installation You'll need docker and unzip to use this repo. For docker, visit the official guide to get starte

Hao Zhu 2 Sep 27, 2022
Search-Engine - 📖 AI based search engine

Search Engine AI based search engine that was trained on 25000 samples, feel free to train on up to 1.2M sample from kaggle dataset, link below StackS

Vladislav Kruglikov 2 Nov 29, 2022
小布助手对话短文本语义匹配的一个baseline

oppo-text-match 小布助手对话短文本语义匹配的一个baseline 模型 参考:https://kexue.fm/archives/8213 base版本线下大概0.952,线上0.866(单模型,没做K-flod融合)。 训练 测试环境:tensorflow 1.15 + keras

苏剑林(Jianlin Su) 132 Dec 14, 2022
Chinese NER with albert/electra or other bert descendable model (keras)

Chinese NLP (albert/electra with Keras) Named Entity Recognization Project Structure ./ ├── NER │   ├── __init__.py │   ├── log

2 Nov 20, 2022
AutoGluon: AutoML for Text, Image, and Tabular Data

AutoML for Text, Image, and Tabular Data AutoGluon automates machine learning tasks enabling you to easily achieve strong predictive performance in yo

Amazon Web Services - Labs 5.2k Dec 29, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
voice2json is a collection of command-line tools for offline speech/intent recognition on Linux

Command-line tools for speech and intent recognition on Linux

Michael Hansen 988 Jan 04, 2023
Must-read papers on improving efficiency for pre-trained language models.

Must-read papers on improving efficiency for pre-trained language models.

Tobias Lee 89 Jan 03, 2023
GVT is a generic translation tool for parts of text on the PC screen with Text to Speak functionality.

GVT is a generic translation tool for parts of text on the PC screen with Text to Speech functionality. I wanted to create it because the existing tools that I experimented with did not satisfy me in

Nuked 1 Aug 21, 2022
Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"

GDAP The code of paper "Code for "Generating Disentangled Arguments with Prompts: a Simple Event Extraction Framework that Works"" Event Datasets Prep

45 Oct 29, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Production First and Production Ready End-to-End Keyword Spotting Toolkit

Production First and Production Ready End-to-End Keyword Spotting Toolkit

223 Jan 02, 2023
Community and sentiment analysis based on tweets

The project has set itself the goal of analyzing the thoughts and interaction of Italian users through the social posts expressed through the Twitter platform on the day of the entry into force of th

3 Nov 17, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
PRAnCER is a web platform that enables the rapid annotation of medical terms within clinical notes.

PRAnCER (Platform enabling Rapid Annotation for Clinical Entity Recognition) is a web platform that enables the rapid annotation of medical terms within clinical notes. A user can highlight spans of

Sontag Lab 39 Nov 14, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Edge-Augmented Graph Transformer

Edge-augmented Graph Transformer Introduction This is the official implementation of the Edge-augmented Graph Transformer (EGT) as described in https:

Md Shamim Hussain 21 Dec 14, 2022
Crie tokens de autenticação íntegros e seguros com UToken.

UToken - Tokens seguros. UToken (ou Unhandleable Token) é uma bilioteca criada para ser utilizada na geração de tokens seguros e íntegros, ou seja, nã

Jaedson Silva 0 Nov 29, 2022
Twitter-Sentiment-Analysis - Analysis of twitter posts' positive and negative score.

Twitter-Sentiment-Analysis The hands-on project is in Python 3 Programming class offered by University of Michigan via Coursera. The task is to build

Eszter Pai 1 Jan 03, 2022