Google AI 2018 BERT pytorch implementation

Overview

BERT-pytorch

LICENSE GitHub issues GitHub stars CircleCI PyPI PyPI - Status Documentation Status

Pytorch implementation of Google AI's 2018 BERT, with simple annotation

BERT 2018 BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding Paper URL : https://arxiv.org/abs/1810.04805

Introduction

Google AI's BERT paper shows the amazing result on various NLP task (new 17 NLP tasks SOTA), including outperform the human F1 score on SQuAD v1.1 QA task. This paper proved that Transformer(self-attention) based encoder can be powerfully used as alternative of previous language model with proper language model training method. And more importantly, they showed us that this pre-trained language model can be transfer into any NLP task without making task specific model architecture.

This amazing result would be record in NLP history, and I expect many further papers about BERT will be published very soon.

This repo is implementation of BERT. Code is very simple and easy to understand fastly. Some of these codes are based on The Annotated Transformer

Currently this project is working on progress. And the code is not verified yet.

Installation

pip install bert-pytorch

Quickstart

NOTICE : Your corpus should be prepared with two sentences in one line with tab(\t) separator

0. Prepare your corpus

Welcome to the \t the jungle\n
I can stay \t here all night\n

or tokenized corpus (tokenization is not in package)

Wel_ _come _to _the \t _the _jungle\n
_I _can _stay \t _here _all _night\n

1. Building vocab based on your corpus

bert-vocab -c data/corpus.small -o data/vocab.small

2. Train your own BERT model

bert -c data/corpus.small -v data/vocab.small -o output/bert.model

Language Model Pre-training

In the paper, authors shows the new language model training methods, which are "masked language model" and "predict next sentence".

Masked Language Model

Original Paper : 3.3.1 Task #1: Masked LM

Input Sequence  : The man went to [MASK] store with [MASK] dog
Target Sequence :                  the                his

Rules:

Randomly 15% of input token will be changed into something, based on under sub-rules

  1. Randomly 80% of tokens, gonna be a [MASK] token
  2. Randomly 10% of tokens, gonna be a [RANDOM] token(another word)
  3. Randomly 10% of tokens, will be remain as same. But need to be predicted.

Predict Next Sentence

Original Paper : 3.3.2 Task #2: Next Sentence Prediction

Input : [CLS] the man went to the store [SEP] he bought a gallon of milk [SEP]
Label : Is Next

Input = [CLS] the man heading to the store [SEP] penguin [MASK] are flight ##less birds [SEP]
Label = NotNext

"Is this sentence can be continuously connected?"

understanding the relationship, between two text sentences, which is not directly captured by language modeling

Rules:

  1. Randomly 50% of next sentence, gonna be continuous sentence.
  2. Randomly 50% of next sentence, gonna be unrelated sentence.

Author

Junseong Kim, Scatter Lab ([email protected] / [email protected])

License

This project following Apache 2.0 License as written in LICENSE file

Copyright 2018 Junseong Kim, Scatter Lab, respective BERT contributors

Copyright (c) 2018 Alexander Rush : The Annotated Trasnformer

Comments
  • Very low GPU usage when training on 8 GPU in a single machine

    Very low GPU usage when training on 8 GPU in a single machine

    Hi, I am currently pretaining the BERT on my own data. I use the alpha0.0.1a5 branch (newest version).
    I found only 20% of the GPU is in use.

    +-----------------------------------------------------------------------------+
    | NVIDIA-SMI 384.81                 Driver Version: 384.81                    |
    |-------------------------------+----------------------+----------------------+
    | GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
    | Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
    |===============================+======================+======================|
    |   0  Tesla V100-SXM2...  On   | 00000000:3F:00.0 Off |                    0 |
    | N/A   40C    P0    58W / 300W |  10296MiB / 16152MiB |     32%      Default |
    +-------------------------------+----------------------+----------------------+
    |   1  Tesla V100-SXM2...  On   | 00000000:40:00.0 Off |                    0 |
    | N/A   37C    P0    55W / 300W |   2742MiB / 16152MiB |     23%      Default |
    +-------------------------------+----------------------+----------------------+
    |   2  Tesla V100-SXM2...  On   | 00000000:41:00.0 Off |                    0 |
    | N/A   40C    P0    58W / 300W |   2742MiB / 16152MiB |      1%      Default |
    +-------------------------------+----------------------+----------------------+
    |   3  Tesla V100-SXM2...  On   | 00000000:42:00.0 Off |                    0 |
    | N/A   47C    P0    61W / 300W |   2742MiB / 16152MiB |     24%      Default |
    +-------------------------------+----------------------+----------------------+
    |   4  Tesla V100-SXM2...  On   | 00000000:62:00.0 Off |                    0 |
    | N/A   36C    P0    98W / 300W |   2742MiB / 16152MiB |     17%      Default |
    +-------------------------------+----------------------+----------------------+
    |   5  Tesla V100-SXM2...  On   | 00000000:63:00.0 Off |                    0 |
    | N/A   38C    P0    88W / 300W |   2736MiB / 16152MiB |     23%      Default |
    +-------------------------------+----------------------+----------------------+
    |   6  Tesla V100-SXM2...  On   | 00000000:64:00.0 Off |                    0 |
    | N/A   48C    P0    80W / 300W |   2736MiB / 16152MiB |     25%      Default |
    +-------------------------------+----------------------+----------------------+
    |   7  Tesla V100-SXM2...  On   | 00000000:65:00.0 Off |                    0 |
    | N/A   46C    P0    71W / 300W |   2736MiB / 16152MiB |     24%      Default |
    +-------------------------------+----------------------+----------------------+
    

    I am not familiar with pytorch. Any one konws why?

    help wanted 
    opened by mapingshuo 13
  • Example of Input Data

    Example of Input Data

    Could you give a concrete example of the input data? You gave an example of the corpus data, but not the dataset.small file found in this line:

    bert -c data/dataset.small -v data/vocab.small -o output/bert.model

    If you could show perhaps a couple of examples, that would be very helpful! I am new to pytorch, so the dataloader function is a little confusing.

    question 
    opened by nateraw 8
  • Why doesn't the counter in data_iter increase?

    Why doesn't the counter in data_iter increase?

    I am currently playing around with training and testing the model. However, as I implemented the test section, I'm noticing that during the LM training, your counter doesn't increase when looping over data_iter found in pretrain.py. This would cause problems when calculating the average loss/accuracy, wouldn't it?

    image

    invalid question 
    opened by nateraw 6
  • model/embedding/position.py

    model/embedding/position.py

    div_term = (torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)).float().exp() should be: div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

    In [51]: (torch.arange(0, d_model, 2) * -(math.log(10000.0) / d_model)).float().exp() ...: Out[51]: tensor([1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])

    Additional question: I don't quite understand how "bidirectional" transformer in the raw paper implemented. Maybe like BiLSTM: concat two direction's transformer output together? Didn't find the similar structure in your code.

    opened by zhupengjia 5
  • The LayerNorm implementation

    The LayerNorm implementation

    I am wondering why don't you use the standard nn version of LayerNorm? I notice the difference is the denomenator: nn.LayerNorm use the {sqrt of (variance + epsilon)} rather than {standard deviation + epsilon}

    Could you clarify these 2 approaches?

    invalid question 
    opened by egg-west 4
  • How to embedding segment lable

    How to embedding segment lable

    Thanks for you code ,which let me leran more details for this papper .But i cant't understand segment.py. You haven't writeen how to embedding segment lable .

    question 
    opened by waallf 3
  • The question about the implement of learning_rate

    The question about the implement of learning_rate

    Nice implements! However, I have a question about learning rate. The learning_rate schedule which from the origin Transformers is warm-up restart, but your implement just simple decay. Could you implement it in your BERT code?

    enhancement 
    opened by wenhaozheng-nju 3
  • Question about random sampling.

    Question about random sampling.

    https://github.com/codertimo/BERT-pytorch/blob/7efd2b5a631f18ebc83cd16886b8c6ee77a40750/bert_pytorch/dataset/dataset.py#L50-L64

    Well, seems random.random() always returns a positive number, so prob >= prob * 0.9 will always be true?

    opened by SongRb 3
  • Mask language model loss

    Mask language model loss

    Hi, Thank you for your clean code on Bert. I have a question about Mask LM loss after I read your code. Your program computes a mask language model loss on both positive sentence pairs and negative pairs.

    Does it make sense to compute Mask LM loss on negative sentence pairs? I am not sure how Google computes this loss.

    opened by MarkWuNLP 3
  • imbalance GPU memory usage

    imbalance GPU memory usage

    Hi,

    Nice try for BERT implementation.

    I try to run your code in 4V100 and I find the memory usage is imbalance: the first GPU consume 2x memory than the others. Any idea about the reason?

    Btw, I think the parameter order in train.py line 64 is incorrect.

    help wanted question 
    opened by WencongXiao 3
  • [BERT] Cannot import bert

    [BERT] Cannot import bert

    I have problems importing bert when following http://gluon-nlp.mxnet.io/examples/sentence_embedding/bert.html

    (mxnet_p36) [[email protected] ~]$ ipython
    Python 3.6.6 |Anaconda, Inc.| (default, Jun 28 2018, 17:14:51)
    Type 'copyright', 'credits' or 'license' for more information
    IPython 6.5.0 -- An enhanced Interactive Python. Type '?' for help.
    
    In [1]: import warnings
       ...: warnings.filterwarnings('ignore')
       ...:
       ...: import random
       ...: import numpy as np
       ...: import mxnet as mx
       ...: from mxnet import gluon
       ...: import gluonnlp as nlp
       ...:
       ...:
    
    
    In [2]:
    
    In [2]: np.random.seed(100)
       ...: random.seed(100)
       ...: mx.random.seed(10000)
       ...: ctx = mx.gpu(0)
       ...:
       ...:
    
    In [3]: from bert import *
       ...:
    ---------------------------------------------------------------------------
    ModuleNotFoundError                       Traceback (most recent call last)
    <ipython-input-3-40b999f3ea6a> in <module>()
    ----> 1 from bert import *
    
    ModuleNotFoundError: No module named 'bert'
    

    Looks gluonnlp are successfully installed. Any idea?

    (mxnet_p36) [[email protected] site-packages]$ ll /ec2-user-anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/gluonnlp-0.5.0.post0-py3.6.egg
    -rw-rw-r-- 1 ec2-user ec2-user 499320 Dec 28 23:15 /ec2-user-anaconda3/envs/mxnet_p36/lib/python3.6/site-packages/gluonnlp-0.5.0.post0-py3.6.egg
    
    opened by logicmd 2
  • why specify `ignore_index=0` in the NLLLoss function in BERTTrainer?

    why specify `ignore_index=0` in the NLLLoss function in BERTTrainer?

    trainer/pretrain.py

    class BERTTrainer:
        def __init__(self, ...):
            ... 
            # Using Negative Log Likelihood Loss function for predicting the masked_token
            self.criterion = nn.NLLLoss(ignore_index=0)
            ...
    

    I cannot understand why ignore index=0 is specified when calculating NLLLoss. If the ground truth of is_next is False (label = 0) in terms of the NSP task but BERT predicts True, then NLLLoss will be 0 (or nan)... so what's the aim of ignore_index = 0 ???

    ====================

    Well, I've found that ignore_index = 0 is useful to the MLM task, but I still can't agree the NSP task should share the same NLLLoss with MLM.

    opened by Jasmine969 0
  • Added a Google Colab Notebook that contains all the code in this project.

    Added a Google Colab Notebook that contains all the code in this project.

    For learning purposes, I added example.ipynb, which is a Google Colab Notebook that works right out of the box. I have also included an example data file that addresses #59 .

    opened by ginward 0
  • It keeps trying to use CUDA despite --with_cuda False option

    It keeps trying to use CUDA despite --with_cuda False option

    Hello,

    I have tried to run bert with --with_cuda False, but the model keeps running "forward" function on cuda. These are my command line and the error message I got.

    bert -c corpus.small -v vocab.small -o bert.model --with_cuda False -e 5

    Loading Vocab vocab.small Vocab Size: 262 Loading Train Dataset corpus.small Loading Dataset: 113it [00:00, 560232.09it/s] Loading Test Dataset None Creating Dataloader Building BERT model Creating BERT Trainer Total Parameters: 6453768 Training Start EP_train:0: 0%|| 0/2 [00:00<?, ?it/s] Traceback (most recent call last): File "/home/yuni/anaconda3/envs/py3/bin/bert", line 8, in sys.exit(train()) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/main.py", line 67, in train trainer.train(epoch) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/trainer/pretrain.py", line 69, in train self.iteration(epoch, self.train_data) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/trainer/pretrain.py", line 102, in iteration next_sent_output, mask_lm_output = self.model.forward(data["bert_input"], data["segment_label"]) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/language_model.py", line 24, in forward x = self.bert(x, segment_label) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/bert.py", line 46, in forward x = transformer.forward(x, mask) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/transformer.py", line 29, in forward x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask)) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/utils/sublayer.py", line 18, in forward return x + self.dropout(sublayer(self.norm(x))) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/transformer.py", line 29, in x = self.input_sublayer(x, lambda _x: self.attention.forward(_x, _x, _x, mask=mask)) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/attention/multi_head.py", line 32, in forward x, attn = self.attention(query, key, value, mask=mask, dropout=self.dropout) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/torch/nn/modules/module.py", line 1102, in _call_impl return forward_call(*input, **kwargs) File "/home/yuni/anaconda3/envs/py3/lib/python3.6/site-packages/bert_pytorch/model/attention/single.py", line 25, in forward return torch.matmul(p_attn, value), p_attn RuntimeError: CUDA out of memory. Tried to allocate 20.00 MiB (GPU 0; 1.95 GiB total capacity; 309.18 MiB already allocated; 125.62 MiB free; 312.00 MiB reserved in total by PyTorch) If reserved memory is >> allocated memory try setting max_split_size_mb to avoid fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF

    opened by hanyangii 0
  • dataset / dataset.py have one erro?

    dataset / dataset.py have one erro?

    "
    def get_random_line(self): if self.on_memory: self.lines[random.randrange(len(self.lines))][1] " This code is to get the incorrect next sentence(isNotNext : 0), maybe it random get a lines it is (isnext:1)。

    opened by ndn-love 0
Releases(0.0.1a4)
Owner
Junseong Kim
Scatter Lab, Machine Learning Research Scientist, NLP
Junseong Kim
ReCoin - Restoring our environment and businesses in parallel

Shashank Ojha, Sabrina Button, Abdellah Ghassel, Joshua Gonzales "Reduce Reuse R

sabrina button 1 Mar 14, 2022
A versatile token stream for handwritten parsers.

Writing recursive-descent parsers by hand can be quite elegant but it's often a bit more verbose than expected, especially when it comes to handling indentation and reporting proper syntax errors. Th

Valentin Berlier 8 Nov 30, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
neural network based speaker embedder

Content What is deepaudio-speaker? Installation Get Started Model Architecture How to contribute to deepaudio-speaker? Acknowledge What is deepaudio-s

20 Dec 29, 2022
Coreference resolution for English, French, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, Explosion AI 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 French 1.2.3 German 1.2

Explosion 70 Dec 12, 2022
A Persian Image Captioning model based on Vision Encoder Decoder Models of the transformers🤗.

Persian-Image-Captioning We fine-tuning the Vision Encoder Decoder Model for the task of image captioning on the coco-flickr-farsi dataset. The implem

Hamtech-ai 15 Aug 25, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 04, 2023
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
Torchrecipes provides a set of reproduci-able, re-usable, ready-to-run RECIPES for training different types of models, across multiple domains, on PyTorch Lightning.

Recipes are a standard, well supported set of blueprints for machine learning engineers to rapidly train models using the latest research techniques without significant engineering overhead.Specifica

Meta Research 193 Dec 28, 2022
Transformer related optimization, including BERT, GPT

This repository provides a script and recipe to run the highly optimized transformer-based encoder and decoder component, and it is tested and maintained by NVIDIA.

NVIDIA Corporation 1.7k Jan 04, 2023
Training code for Korean multi-class sentiment analysis

KoSentimentAnalysis Bert implementation for the Korean multi-class sentiment analysis 왜 한국어 감정 다중분류 모델은 거의 없는 것일까?에서 시작된 프로젝트 Environment: Pytorch, Da

Donghoon Shin 3 Dec 02, 2022
A look-ahead multi-entity Transformer for modeling coordinated agents.

baller2vec++ This is the repository for the paper: Michael A. Alcorn and Anh Nguyen. baller2vec++: A Look-Ahead Multi-Entity Transformer For Modeling

Michael A. Alcorn 30 Dec 16, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Voilà turns Jupyter notebooks into standalone web applications

Rendering of live Jupyter notebooks with interactive widgets. Introduction Voilà turns Jupyter notebooks into standalone web applications. Unlike the

Voilà Dashboards 4.5k Jan 03, 2023
Diaformer: Automatic Diagnosis via Symptoms Sequence Generation

Diaformer Diaformer: Automatic Diagnosis via Symptoms Sequence Generation (AAAI 2022) Diaformer is an efficient model for automatic diagnosis via symp

Junying Chen 20 Dec 13, 2022
Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Pytorch-version BERT-flow: One can apply BERT-flow to any PLM within Pytorch framework.

Ubiquitous Knowledge Processing Lab 59 Dec 01, 2022
Switch spaces for knowledge graph embeddings

SwisE Switch spaces for knowledge graph embeddings. Requirements: python3 pytorch numpy tqdm Reproduce the results To reproduce the reported results,

Shuai Zhang 4 Dec 01, 2021
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021